

FUNDACIÓN HONDUREÑA DE INVESTIGACIÓN AGRÍCOLA

Programa de Diversificación

Informe Técnico 1987

APDO. Postal 2067 * San Pedro Sula, Honduras * Tel. (504) 56-2078, 56-2470 * Telex: 8303 FHIA HO

CONTENIDO

		Página
INTRO	DUCCION	
1.	SITUACION E IMPORTANCIA DE LOS CULTIVOS EN HONDURAS DURANTE 1987	2
II.	PROBLEMAS PRIORITARIOS	5
III.	OBJETIVOS DEL PROGRAMA EN 1987	8
ıv.	TRABAJOS DE INVESTIGACION	10
v.	TRABAJOS DE COMUNICACION	41
VI.	PERSPECTIVAS DEL PROGRAMA A CORTO PLAZO	8
ıv.	TRABAJOS DE INVESTIGACION	
	Caracterización - CARD187 - DIO1EA87 - DIO2EA87 - DIO3IA87	11 13 14 15
	Experimentación -DIO4AG87 -DIO5F187	18 20
	-DI06PA87 -DI07EN87 -DI08PH87 -DI10AG87 -DI09EAG87	22 24 32 35 38
	Proyecto Especial de Soya	49
	Introducción	50
ı.	Problemas prioritarios	51

	Página
II. Objetivos y propósitos	51
- Mejoramiento genético de soya	52
- Introducción varietal	53
- Selección individual	54
 Selección por adaptación y precocidad 	57
- Selección por promiscuidad	62
- Selección por resistencia al deterioro	
- de la semilla	74
- Prácticas agronómicas	77
- Baja densidad de siembra	80
- Lotes demostrativos y registros económicos	83
- Registros económicos	84
 Mejoramiento genético de maíz dulce 	86
- Publicación técnica de soya	87

INDICE DE CUADROS

Cuadro	No.	Página
1	Tratamiento para inducción de floración en	
	mango Haden	18
2	Tratamientos bajo evaluación para control de Antracnosis en mango	22
3		22
	en varias localidades de Honduras	27
4	Infestación de cultivares de mango por mos-	
5	cas de fruta en Comayagua, Honduras Infestación de guayaba por moscas de la	28
	fruta en varias localidades de Honduras	29
6		
7	en varias localidades de Honduras Infestación de manzana rosa por moscas de	30
	la fruta en varias localidades de Honduras	31
8		52
9	Principales características agronómicas pa- ra mejores líneas de Darco l y tres testi-	
	gos comerciales	55
10	Principales características agronómicas pa-	
	ra mejores líneas de SIATSA 194 A y tres testigos comerciales	55
11	Principales características agronómicas pa-	33
	ra mejores lineas de SIATSA 194 y tres tes-	
12	tigos comerciales Principales características agronómicas pa-	56
12	ra mejores lineas de 50206-3-4 y Júpiter y	
	tres testigos comerciales	56
13	Comportamiento promedio de 21 variedades	
14	tardías y cinco testigos comerciales de soya Comportamiento promedio de 15 variedades	58
	precores y cinco testigos comerciales de soya	59
15	Principales características agronómicas para	
	25 nuevas variedades y cinco testigos comer- ciales	61
16	Principales características agronómicas para	
	8 variedades promiscuas de soya y tres tes-	
	tigos comerciales al ser sembradas con y sin inoculante	64
17	Principales características agronómicas para	
	10 variedades promiscuas de soya y cinco tes- tigos comerciales. Catacamas, 1986	65
18		65
	ra 10 variedades promiscuas de soya y cinco	
19	testigos comerciales. Choluteca, 1986 Comportamiento promedio de 10 variedades	66
19	promiscuas y cinco testigos comerciales de	
	soya, cuando sembradas con y sin inoculante.	
	Guaruma y Choluteca 1986/ 87	67

Cuad	iro l	No.	Página
	20	Comportamiento agronómico para variedades promiscuas precoces con inoculante. Guaruma, 1986	68
	21	Comportamiento agronómico para variedades promiscuas precoces sin inoculante. Guaruma,	
	22	1986 Comportamiento agronómico para variedades	69
		promiscuas intermedias con inoculante	70
	23	Comportamiento agronómico para variedades promiscuas intermedias sin inoculante	71
	24	Comportamiento agronómico para variedades promiscuas tardías con inoculante	72
	25	Comportamiento agronómico para variedades	
	26	promiscuas tardías sin inoculante Distribución de frecuencia para la aptitud	73
		germinativa de variedades no promiscuas con cinco a ocho meses de envejecimiento	76
	27	Distribución de frecuencia para la aptitud	
		germinativa de variedades promiscuas con cinco a ocho meses de envejecimiento	76
	28	Efecto promedio de combinaciones de herbi- cidas sobre el control de malezas y los ren-	
		dimientos de la soya en ausencia de Caminadora	
	29	Efecto promedio de cinco densidades de siembra sobre las principales características de dos	
	30	variedades de soya Estimados de semilla y valor de ésta para	81
	30	dos variedades de soya cinco densidades de	
		siembra	82

INDICE DE FIGURAS

Figura No.		Página
1	Mosca del mango	26

INDICE DE CUADROS

Cuadro	No.	Página
1	Análisis químico de suelos del área experi- mental	7
2	Productos y dosis de herbicidas evaluados para el control de malezas en el cultivo de cítricos. Variedad Valencia	9
3	Población inicial de malezas en área experi- mental antes de la aplicación de los tratamientos	11
4	Número de plantas gramíneas anuales y perennes. Porcentaje de control después de la aplicación de los tratamientos entre	
5	planta Número y porcentaje de malezas de hoja ancha después de la aplicación de los tratamien-	12
6	tos entre plantas Número y porcentaje de control de malezas	14
7	bajo la copa de los árboles de cítricos Efecto de herbicida sobre el tamaño y pro-	16
8	ducción de fruta en cítricos Resultado de análisis de calidad de naranja	18
Ü	obtenida del experimento de control de malezas	19
9	Porcentajes de control de malezas bajo la copa de los árboles. 1987	21
10	Rendimiento de árboles de naranja valencia con control químico y manual de malezas	
11	bajo la copa de los árboles. Efecto de herbicida sobre tamaño y peso	23
12	de fruta en cítricos. 1987 Análisis de presupuesto parcial para 1987, de experimento con herbicidas. En	24
13	Lempiras Comparación de costos variables y beneficios netos de experimento con herbicidas en	25
	cítricos durante dos ciclos	26
14	Cuadro No. 14	33
15	Efecto de la aplicación de NPK sobre la producción y concentración de nutrimentos en cítricos	34
16	Contenido de humedad (%) en el suelo en área sin cobertura comparado al área con cober-	
17	tura (Mucuna deeringiana (Bort) Merr.) Contenido de nitrógeno (%) peso de materia húmeda y seca, y porcentaje de humedad	35
	obtenidos de nódulos de <u>Mucuna deeringiana</u> (Bort) Merr.	35

Cuadro No.		<u>Página</u>
18	Resultado del análisis de suelos en áreas con cobertura de <u>Mucuna deeringiana</u> (Bort) Merr.	38
19	Contenido de humedad (%) en el suelo; área con frijol de abono vs. área sin frijol de	
20	abono Costos de mantenimiento con cultivo de cobertura (Mucuna deeringiana (Bort)	39 40
21	Costos de mantenimiento de (Mucuna deeringiana (Bort) Merr.) como cobertura	
22	viva en cítricos en el segundo año Costos comparativos de mantenimiento de una hectárea de cítricos con cobertura versus	40
23	sin cobertura Población de Malezas Existentes de la aplica- ción de herbicidas	41 43a
24	Efecto de herbicidas en el control de malezas en cítricos en dos localidades de Sonaguera, Colón	43a 44
25	Efecto de herbicidas en el control de malezas en cítricos en dos localidades de Sonaguera, Colón durante 1987.	
26	Efecto de tratamientos sobre la producción de fruta en cítricos. Churrusquera 1986-1987	47
27	Análisis de presupuesto parcial (1986) de experimento con herbicidas. Churrusquera, Sonaguera, Colón. En Lempiras	48
28	Análisis de presupuesto (1986) de experi- mento con herbicidas. Churrusquera, Sonaguera, Colón. En Lempiras.	49
29	Valores de la relación beneficio/costo y valor del cultivo en experimento con her- bicida, Churrusquera, Sonaguera, Colón	52
30	Efecto de herbicidas sobre la producción de fruta en cítricos. Churrusquera 1986-1987	54
31	Análisis de presupuesto parcial (1986) de experimento con herbicidas. Faust, Sonaguera, Colón. En Lempiras	55
32	Análisis de presupuesto parcial para 1986 de experimento con herbicidas. Faust, Sonaguera	56
33	Valores de la relación beneficio/costo y va- lor del cultivo en experimento con herbi- cida. Faust. (1986-87)	58
34	Efecto de Herbicidas Sistemáticos en el con- trol de Gramíneas Anuales y Perennes. Lago	
35	de Yojoa Efecto de herbicidas residuales en el control de malezas anuales y perennes (Gramíneas) Hoja ancha y Ciperáceas. Lago	64
	de Yojoa	65

Cuadro No.		Página
36	Porcentaje de control obtenido con dos apli- caciones de herbicidas por ciclo de doce meses	66
37	Análisis de presupuesto parcial (1986) de experimento con herbicidas por ciclo de doce meses	
38	Análisis de presupuesto parcial (1986) de experimento con herbicidas. Lago de Yojoa,	67
39	Cortés, en Lempiras Valores de la relación beneficio/costo y va- lor del cultivo en experimento de herbici-	68
40	da en cítricos. Yojoa, Cortés Efecto de la aplicación de zinc sobre la pro- ducción de cítricos. Cosecha 1987. Proyecto	71
41	CI17AG85 Efecto de la aplicación de fertilizante sobre producción en cítricos. Cosecha 1987. Pro-	75
42	yecto CII9AG86 Efecto de la aplicación de fertilizante sobre producción en cítricos. Cosecha 1987. Pro-	78
43	yecto Cl23AG86 Efecto de la aplicación de fertilizante sobre	80
44	la concentración de nutrientes en la hoja de cítricos. Cosecha 1987. Proyecto CI23AG87 Efecto de la aplicación de fertilizantes sobre	81
	producción y concentración de nutrientes en la hoja en cítricos. Cosecha 1987. Proyecto CI24AG86	84
45	Efecto de la aplicación de calcio sobre la pro ducción y concentración de nutrimentos en la hoja en cítricos*. Proyecto C127AG86	- 86
46	Dosis de Treflan, porcentaje de control de Caminadora (Rottboellia exaltata L.F) y cos- to de aplicación	89
47	Población inicial de plantas y número de se- millas de Caminadora (Rotboellia exaltata	
48	L.f) endrea experimental Susceptibilidad de dos especies de cítricos al ataque de Mosca del Mediterráneo bajo	90
49	condiciones de campo. 1987 Espesor de la cáscara de tres especies de cí- tricos en relación con la longitud del ovi-	113
	positor de Saludens y C. capitata	114

INDICE DE FIGURAS

Cuadro No.		Página
1 2	Retorno Neto Finca Guzmán 1986-1987 Beneficio Costo Finca Guzmán 1986-1987	29
3	Retorno Neto Finca Sales 1986-1987	51
4	Beneficio/Costo Finca Sales 1986-1937	53
5	Retorno Neto Finca Meza 1986-1987	57
4 5 6	Beneficio/Costo Finca Meza 1986-1987	59
7	Retorno Neto Finca Fernández 1986-1987	69
8	Beneficio/Costo Finca Fernández 1986-1987	72
9	Estados larval y adulto de O. serpentifera (izquierda) y O. scabellum (derecha)	103
10	Diagrama del ciclo de vida de O. serpentifera en relación con sus plantas hospederas	104
11	Ciclo de vida O. serpentifera bajo condicio- nes de invernadero	105
12	Daño de polilla perforadora en naranja dulce cv. Valencia	106
13	Fruta de naranja dulce dañada por polillas perforadoras durante noviembre 1985-diciem- bre 1986 - presencia de larvas - período de control de O. paupera. Guaymitas, Depto.	
	Yoro	107
14	Mosca del Mediterráneo	111
15	Poblaciones de C. capitato en café en duran- te 1986-1987	111
16	Sección vertical de toronja y ortanique mos- trando la penetración del ovipositor de	
17	C. capitata y S. ludens	116
17 18	Poblaciones de C. capitata en glándula de aceite	117
19	durante 1986-87. Santa Cruz de Yoro Poblaciones de Mosca Mexicana de la fruta	120
20	durante 1986-1987. Guaymas, Yoro Poblaciones de Mosca Mexicana de la fruta	121
21	durante 1986-1987. Santa Cruz de Yojoa Poblaciones de Mosca Mexicana de la fruta	122
22	durante 1987. San Alejo, Atlántida Poblaciones de ácaro tostador en fruta y ho- jas de Ortenique 1986-1987. Santa Cruz de	123
23	Yojoa Poblaciones de ácaro ancho con fruta y hojas de Ortanique, 1986-1987. Santa Cruz de	126
	Yojoa	127
24	Poblaciones de ácaro rojo en fruta y hojas de Ortanique, 1986-1987. Santa Cruz de	
25	Yojoa	128
25	Poblaciones de chinche harinosa en fruta de Ortanique, 1986-1987. Santa Cruz de Yojoa	129
26	Resumen de datos climatológicos. Estación CI-Y0-01. Santa Cruz de Yojoa	134
27	Resumen de datos climatológicos. Estación	135

INTRODUCCION

Las acciones del Programa de Diversificación se iniciaron teniendo como propósito el cultivo de Soya, como un proyecto acorde con el mandato de la FHIA referente al desarrollo de granos básicos, en cuanto a alimentos básicos del país. Tras dos años y medio de operaciones, la FHIA ha demostrado que la Soya tiene buena perspectiva, no sólo como cultivo de importación sino también como producto para consumo interno como alimento concentrado.

El Programa ha llegado a la etapa de impulsar la promoción y desarrollo de productos comerciales si bien hay otros campos donde FHIA debe proseguir sus investigaciones; tal es el caso de la producción de semillas básicas, donde sería más eficiente y funcionaría bien.

El Programa siguió sus operaciones con la decisión de trabajar en mango, pimienta negra y palmito. Los experimentos en mango ya han comenzado, habiéndose obtenido algunos resultados preliminares. En pimienta negra, las introducciones están ya en los invernaderos y en palmitos, la colección de plantas se encuentra en el vivero, contándose con ocho especies de palmito listas para la experimentación después de una primera evaluación.

El Programa ha identificado ya algunas colecciones de cultivos con potencial en el futuro, y en las que FHIA tiene interés: piña jenjibre de especias, curcuma, ñame, plantas ornamentales y otras que se encuentran en la etapa de propagación y cuidado. Además, el Programa ha almacenado y propagado otros cultivos hortícolas y agronómicos, tales como frijol mungo (rojo, verde y amarillo), frijol caupí (compea) (rojo y blanco), cacahuate, trigo, moringa, camote, bak-choi, frijol de rienda, frijol alado, frijol lima y otros.

Actualmente el Programa se encuentra enfrascado en diversas actividades, tales como la búsqueda y análisis de otros cultivos que pudieran ser atractivos para Honduras, realizando estudios y estructurando proyectos sobre piña, plantas ornamentales y flores de corte, y, o, escribiendo textos sobre las perspectivas en nueces, corozo y diversificación en las zonas cañeras.

Finalmente, el Programa ha realizado dos seminarios, dos reuniones técnicas, un día de campo, y un taller para diferentes clientelas. En Diciembre 5-6 se realizó un cursillo sobre Producción de Mango para Exportación con la participación de ROCAP y FEPROEXAAH.

Como un logro significativo de este año, el Programa ha tenido impactos importantes en su clientela, particularmente en lo referente a decisiones de comercialización de los cultivos de soya, mango y pimienta negra. Asimismo, el Programa ha permitido a la FHIA integrarse como participante en diferentes acciones del Gobierno, de la empresa privada, de organismos de desarrollo y de universidades.

I. SITUACION E IMPORTANCIA DE LOS CULTIVOS

EN HONDURAS DURANTE 1987

I. SITUACION E IMPORTANCIA DE LOS CULTIVOS EN HONDURAS DURANTE 1987.

El país importa anualmente L.16.5 millones en soya. La producción nacional de 600 hectáreas suple sólo unos 15 000 quintales, o sea un valor de L.495 000, equivalente a un tres por ciento de sus requerimientos. Para un país que cuenta con zonas de producción eficientes, sería deseable que se incrementara la producción de soya a un nivel cercano a la autosuficiencia, a fin de ahorrar divisas e intensificar la productividad.

En mango Honduras tiene una población estimada en más de 200 000 árboles productivos, que es la población más grande de Centroamérica. Sin embargo, debido a que no se realiza ninguna exportación ni procesamiento, la producción se pierde durante la época.

La importancia de la pimienta negra está motivada por su importación, la que gira alrededor de los L.500 000.00 anuales, aunque Honduras puede llegar a ser un gran productor y exportador ya que cuenta con muchas áreas y clima apropiados para el cultivo.

El Palmito es un cultivo nuevo. Honduras cuenta con una reciente industria casera de conservas de palmito en San Marcos, Ocotepeque, y en el Merendón, pero el que tiene una perspectiva atractiva para Honduras es el mercado mundial.

En el caso de otros productos que la FHIA está investigando, tales como piña y flores de corte, se observa que el cultivo de la piña ha sido establecido con base en la variedad Cayena lisa, la cual puede ampliarse en áreas más aptas. En el caso de las flores de corte, que Honduras aún no ha exportado flores como jenjibre rojo, aunque ya se han hecho las investigaciones pertinentes. Otros países de Centroamérica y el Caribe han logrado muchos avances en este campo, particularmente con el uso de amplios sistemas de carga y avionetas.

II. PROBLEMAS PRIORITARIOS

II. PROBLEMAS PRIORITARIOS.

El Programa ha resuelto parcialmente algunos problemas tales como búsqueda de la clientela, selección de áreas para investigación y comprobación de tecnología, importación de introducciones de material de germoplasma y la selección de productos ó cultivos prioritarios para la investigación.

Para este año los problemas pendientes son la readecuación de facilidades para investigación: bodegas apropiadas para el almacenamiento de semillas básicas, casa de campo (Sección 38), reparación de los canales de riego (Sección 29) y caracterización para cada cultivo.

Un componente problemático para el Programa es la gran cantidad de personas con diversos intereses sobre muchos cultivos que no son enfatizados por la FHIA. En el futuro aún se espera ayudar a este público de alguna manera más eficiente.

Otro problema del Programa es concerniente a la post-cosecha, que puede adelantar el desarrollo de los cultivos. Actualmente el Programa adelanta proyectos en post-cosecha, los que pueden ser la llave de exportaciones más rápidas hacia Europa, tal como la post-cosecha en mango. En Europa los requerimientos de control de mosca no son tan estrictos como en Estados Unidos.

Fuera de investigación y tecnología, los cultivos como mango y flores tropicales necesitan una reforma en el sistema de transporte por avión, pues este factor impide obtener contratos fijos con el mercado. Asimismo, hay otros problemas en la comercialización (agro-negocio) y financiamiento de los proyectos.

III. OBJETIVOS DEL PROGRAMA EN 1987

IV. TRABAJOS DE INVESTIGACION

V. TRABAJOS DE COMUNICACION

VI. PERSPECTIVA DEL PROGRAMA A CORTO PLAZO

III. OBJETIVOS DEL PROGRAMA EN 1987.

El Programa tuvo como objetivos:

- La identificación de los cultivos de exportación más atractivos;
- El desarrollo de tecnologías para los cultivos en soya, mango, palmitos y pimienta negra;
- 3. La provisión de una serie de documentos para el análisis comparativo y,
- El establecimiento de un proceso que identifique y, o, establezca la clientela.

Trabajando junto con FEPROEXAAH, con el Ministerio de Recursos Naturales y con contactos en diferentes cursillos y organismos de desarrollo, el Programa ha tenido una visión mejorada sobre los cultivos, las clientelas y los requerimientos de desarrollo de tecnología.

Todos los objetivos fueron cumplidos al menos parcialmente, y aún hay mucho más por hacer.

En 1988-1989 continuará el desarrollo de tecnología, la búsqueda de la clientela apropiada y la preparación de documentos orientadores en la toma de decisiones para la selección de cultivos. Para profundizar el impacto del Programa serán organizados cursillos específicos en mango, soya y pimienta negra; se organizará a grupos de inversionistas en diferentes cultivos y se conducirán talleres de diferentes organismos de apoyo político, financiero, técnico y otros para diferentes rubros de diversificación.

IV. TRABAJOS DE INVESTIGACION.

(Los proyectos son presentados individualmente).

V. TRABAJOS DE COMUNICACION.

(Los proyectos son presentados individualmente).

VI. PERSPECTIVA DEL PROGRAMA A CORTO PLAZO.

En los siguientes años se pretende impulsar la más grande comercialización de soya, en una campaña conjunta del Banco Centroamericano de Integración Económica (BCIE) diferentes cooperativas y el Gobierno como actores principales. Con esta campaña se espera incrementar la producción en el corto plazo.

En mango, se procederá a desarrollar actividades "proto-comerciales" en fincas más grandes en los siguientes tres años, con ensayos pilotos de control de antracnosis y plagas en la finca, ensayos de post-cosecha y un ensayo de mercadeo local e internacional (Europa). Continuarán los estudios de control de las moscas para obtener los datos requeridos por el Depto. de Agricultura de E.U.A. (USDA) para exportaciones de mango a los Estados Unidos. Probablemente sea necesario realizar un experimento de tres años de ensayos de envío de mangos a Florida.

En pimienta negra, las actividades se centrarán en la búsqueda de la clientela para 1988 y en la propagación de materiales vegetativos, a fin de contar con amplia disponibilidad de plantitas para ensayos en diferentes lugares (microclimas). Se pretende realizar seminarios promocionales en 1988 y cursillos de 1-2 días en 1989. Ya hay interés en pimienta negra, pero esperamos un incremento del interés mediante una campaña restringida a clientes seleccionados. En 1990 y 1991 Honduras puede tener unas 50-100 hectáreas sembradas y así lograr auto-suficiencia en pimienta negra en 1993.

El palmito es el cultivo donde todas las actividades ejecutan ensayos sin promoción formal, hasta que la FHIA desarrolle una tecnología nueva. Los clientes potenciales del palmito no están bien definidos, pero con la divulgación pública de las técnicas en 1990 se podrá tener identificada a esta clientela. Se espera que en 1992-1994 las producciones estén disponibles para una comercialización local e internacional.

El Programa continuará con la búsqueda de otros cultivos para diversificación, y profundizará estudios específicos sobre aquellos cultivos que merezcan atención.

Además, se pretende convocar a reuniones y talleres de coordinación y colaboración de diferentes organismos de desarrollo en Honduras, así como celebrar cursillos sobre cultivos de mango, soya y pimienta negra y otros talleres en selección de cultivos para diversificación. Se ofrecerá un curso en 1988 y 1989 en torno a decisiones para inversión, realizado con diferentes clientes y funcionarios del gobierno, empresarios privados y el grupo profesional (universitario).

IV. TRABAJOS DE INVESTIGACION

Estudio: Evaluación Comparativa de Cultivos de

Diversificación.

Código: CARDI87

Responsables: Panfilo Tabora, Carlos M. Zacarias y

Michael Wilson

Objetivos:

 Evaluar 25 cultivos adicionales según estándares basados en criterios y parámetros específicos.

 Proveer los fundamentos para la toma de decisiones en la selección de cultivos que serían investigados y, o, promovidos.

Localización: Todo el país y en el exterior de ser

necesario.

Fecha de Inicio: En el curso de 1987.

Metodología:

 Recolectar toda información posible de tipo técnico y económico para la proyección.

- Reconocer todas las áreas posibles de desarrollo de los cultivos y recolectar información agroecológica.
- 3. Desarrollar el modelo de producción más factible.
- Proyectar los costos e ingresos tomando como base un área de 10 hectáreas.
- Presentar el flujo de caja según los costos e ingresos proyectados.
- Calcular las medidas evaluativas según los datos económicos y otros generados.
- 7. Presentar las medidas evaluativas.

Resultados y Observaciones:

En vez de hacer una evaluación de 25 cultivos adicionales, tres proyectos fueron estudiados: a) proyecto piloto de piña, b) mango, y c) cortes de flores tropicales para exportación.

Un consultor presentó diversas recomendaciones y cosas con estrategias en torno al proyecto de piña.

Conclusiones y Recomendaciones:

- En el caso de la piña, se necesita diseñar una nueva estrategia apropiada para el mandato de la FHIA. Con una estrategia más apta, un estudio puede ser estructurado como parte de una propuesta para funcionamiento.
- En el caso de cortes de flores tropicales, el proyecto tiene posibilidad de financiamiento, pero se requiere rehacerlo tras haber analizado las sugerencias de varias personas.
- 3. En el caso de mango, el proyecto está en desarrollo en escala reducida. Se pretende ejecutar varios experimentos con la producción, particularmente en post-cosecha y control de plagas y enfermedades en post-cosecha.

Estudio:

Estudios de Mercado

Códigos

DIO1EA87

Responsable:

Carlos M. Zacarías

Objetivo:

Evaluar las perspectivas de mercado interno y externo en el corto, mediano y largo plazo, de los cultivos de pimienta negra, palmito y cítricos de especialidad.

Localización:

Todo el país y en el exterior de ser

necesario.

Fecha de Inicio:

En el curso de 1987.

Metodología:

En la elaboración de los estudios de mercado se realizarán exhaustivas investigaciones de campo. Asimismo, se hará uso de fuentes bibliográficas disponibles.

Observaciones:

El Programa de Diversificación y el Departamento de Economía Agrícola están recopilando información del mercadeo y mercados del mango. Una recopilación fue presentada en un curso sobre mango (Dec. 9).

Estudio: Registros Económicos

Código: DI02EA87

Responsable: Carlos M. Zacarías, Jorge A. Reyes y

Rigoberto Zúniga.

Objetivo:

Establecer un sistema de contabilidad permanente y diferenciable de los costos e ingresos de los cultivos de diversificación seleccionados (frijol soya, mango, pimienta negra y palmito) con el fin de determinar la rentabilidad, las economías de escala y las ventajas comparativas internas y externas de los mismos.

Localización:

Uno en cada una de las siguientes localidades: en Filopo (Cortés), en Urraco (Yoro), Comayagua (Comayagua), Guaruma (Cortés), y área cafetalera por determinar, y dos en Guaymas (Yoro).

Fecha de Inicio: En el curso de 1987 (variable).

Metodología:

La selección de los ocho agricultores con quienes se llevará los registros fue realizada con base en criterios de accesibilidad, representatividad, alfabetismo, tecnología, tamaño de las fincas y zonas de concentración.

Estudio: Inventario y Caracterización de las

Zonas de Producción del Mango.

Código: DI031A87

Responsable: R. Vaquero

Objetivo:

Obtener un inventario actualizado de las áreas y árboles en producción para exportación y sus condiciones de producción.

Localización: Choluteca, Comayagua y Sula

Fecha de Inicio: Marzo, 1987

Terminación: Sept., 1988

Metodología:

a. Materiales:

- Vehículo
- Hojas de encuestas
- Grabadora
- Cámaras
- Guías para dimensión de los árboles
- Mapas

b. Métodos:

- Se elaborará un formato de encuesta para determinar lo siguiente:
- Nombre del dueño de la finca
- Localización
- Tamaño de la finca
- Cantidad de árboles/variedad
- Edad de los árboles (fecha en que fueron plantados)
- Clasificación de los árboles
- Prácticas culturales (distanciamiento, fertilización, propagación, malezas, etc.)
- Descendencia del material plantado
- Otros cultivos
- Planes de expansión
- Estado de los árboles
- La encuesta será analizada y presentada en mapas y reportes estadísticos.

Duración del Estudio:

16-18 meses

Resultados y Observaciones:

El formulario de la encuesta está concluído y revisado. La primera base de conocimiento del área comenzó en Septiembre de 1987 y se espera que la encuesta esté terminada en Septiembre de 1988.

II. EXPERIMENTACION

Estudio:

Inducción de la Floración en Mango Haden.

Código:

DI04AG87

Responsables:

P. Tabora, M. Zantúa, Teófilo Ramírez y J.

David Portillo

Objetivos:

 Inducir la floración de mango Haden en los meses de agosto a diciembre con el propósito de aprovechar la poca oferta de mango que hay en el mercado norteamericano y local durante los meses de enero a abril;

- 2. Incrementar la producción de mango a través de la adopción de la técnica de inducción de floración;
- 3. Delinear la capacidad futura de exportación de mangos durante los meses de enero-abril.

Localización:

Comayagua

Fecha de Inicio:

Agosto, 1987

Variedades:

Haden

Diseño experimental: Completamente al azar

Tratamientos:

Cuadro No. 1. Tratamiento para inducción de floración en mango Haden.

No.	Mes de Aplicación	n Producto Químico			
1	Agosto	Nitrato de	Potasio+	Flower Set	
2	Septiembre				
3	Octubre				
4	Noviembre				
5	Diciembre				

Materiales:

Nitrato de Potasio; Fórmula de Flower Set; Motobomba; Pintura; Insecticida; Fungicidas; Agua.

Metodología:

- Selección de árboles útiles. Cada mes fueron seleccionados diez árboles útiles con yemas terminales bien desarrolladas y hojas fisiológicamente maduras.
- 2. Dosis en aspersión. Los árboles seleccionados en cada mes fueron asperjados con la solución de Nitrato de Potasio al cuatro por ciento más la fórmula Flower Set.
- 3. La cobertura de las aspersiones tiene que ser uniforme llegando la solución, después de aplicado, hasta el punto de goteo en las hojas.

Resultados y Discusión:

Las aplicaciones de la solución para inducción a la floración hecha en los meses de agosto, septiembre y octubre han mostra do una respuesta positiva. En la aplicación de agosto \overline{y} setiembre los frutos de mango están en crecimiento y en la aplicación hecha en octubre las plantas están en período de floración. La primera aplicación de agosto tiene respuesta en 40% de árboles y en septiembre en 50%. Hay 100% de respuesta en la aplicación de octubre.

Estudio: Respuesta Varietal a la Inducción de

Floración en Variedades de Mangos

Sembradas en Honduras.

Código: DI05F187

Responsable: P. Tabora y J. David Portillo

Objetivos:

La inducción de floración ha sido practicada extensamente en los mangos Pico y Carabao (Filipinas) (Barba, 1982) (PCARRD, 1983 y PCARRD, 1978). Ha habido poco trabajo sobre el efecto en otras variedades exportables, aunque la India lo ha realizado con sus variedades locales.

Este estudio tiene como objetivo determinar si hay otros efectos diferenciables de las observaciones hechas en los mango Carabao, y poder diseñar regimenes específicos para las variedades más importantes.

Localización: El Zamorano y Choluteca.

Fecha de Inicio: Nov. 22, 1986

Metodología:

Variedades: Haden, Carabao, Erwin Kent y Fairchild

Diseño experimental: La información será analizada con base

en un diseño CKD; de otra manera se haría en un simple término comparativo

Materiales:

En las cinco variedades más importantes para exportación, de al menos tres concentraciones (8,4,2 y 0%):

- Nitrato de Potasio
- Flowerset

Procedimientos y Tratamientos:

 Será seleccionado un grupo contentivo de las variedades de mango exportable más importantes. Debido a que El Zamorano tiene algunas de estas variedades, podría ser el sitio indicado.

- 2. Los árboles más apropiados serán seleccionados con terminaciones de fruta maduras. Si estos árboles no son suficientes, los diseños clásicos analíticos serán dispensados y aún podría variar el tiempo.
- Los tratamientos serán tres concentraciones o tipos de inductores:
 - 2% KNO3
 - 4% KNO3
 - 8% KNO³
 - Flowerset
- 4. El rociamiento se hará solamente en 1/4 del árbol, así: 1/4 en noviembre y 1/4 del árbol en diciembre.
- Información a ser recopilada:
 - No. días de floración
 - Otras observaciones, % de Fruitset

Resultados y Observaciones:

En 1986 y 1987 en El Zamorano fueron aplicadas 17 variedades con hormonas. Ya ha sido obtenida respuesta de floración en las variedades de Julie, Carabao, Amini, Erwin y Haden. Estudio: Control de Antracnosis en Mango.

Código: DI06PA87

Responsables: P. Tabora, J. Krausz y J. David Portillo

Objetivo:

Evaluación de aspersiones de fungicidas comerciales y frecuencia de aplicación en control de antracnosis en mango.

Localización:

Fecha de Inicio: Octubre, 1987

Variedades:

Tratamientos:

Cuadro No. 2 Tratamientos bajo evaluación para Control de Antracnosis en Mango

Trat	amien	os Dosis		ERVALOS odo "A"	DE ASPERSION Periodo "B"
A. Benla	ate	0.6 g/litro	7	días	28 días
Benla	ate	0.6 g/litro	. 7	días	
B. Ditha	ane F.	3 ml/litro		-	14 días
Benla	ate	0.6 g/litro	7	d í as	
C. Champ	oion	2.37/litro		-	28 días
D. Ditha	ane F.	3 ml/litro	7	días	14 días
E. Testi	igo No-Traba	jo		-	
		-			

Período A= Desde cuando los panículas alcanzan cinco cm de largo hasta cuando la fruta está pegada.

Período B= Desde cuando la fruta está pegada hasta 14 días antes de la cosecha.

Diseño experimental: Bloques al azar con cinco replicaciones, utilizando un árbol por parcela.

Metodología:

El área experimental fue delimitada dentro de un huerto de mango del cultivar. Un total de cinco tratamientos fue asignados aleatoriamente utilizando un diseño experimental de bloques al azar, con cinco repeticiones; cada unidad experimental está constituída por un sólo árbol.

Los tratamientos involucran el uso de Benlate, Dithane F, y Champion (77% hidróxido de cobre) sólo o en combinaciones tal como se encuentran en el Cuadro No.2. Las aplicaciones se efectuarán con una aspersora terrestre de alta presión/alto volumen marca Solo Spray Cart, Modelo 49-00-308, con agitación hidráulica parcial y dotada de pistola atomizadora.

Los datos incluyen la cantidad de la fruta pegada, incidencia y severidad de infección de la fruta, y calidad postcosecha de la fruta.

Observaciones

El área de experimento fue seleccionada en Comayagua y las aspersiones de iniciación de flores fueron hechas en las últimas semanas de diciembre de 1987, para una aplicación de los tratamientos en enero de 1988.

Estudio: Monitoreo de poblaciones de moscas de la

fruta del mango y su control en

precosecha y postcosecha.

Código: DI07EN87

Responsables: Pablo Jordán Soto, Hernán Espinoza.

Objetivo:

 Determinar la dinámica poblacional de las moscas que afectan la fruta del mango en relación con sus hospederas, factores climáticos y enemigos naturales.

- Estudiar la biología y comportamiento de las especies más importantes bajo condiciones de campo y laboratorio.
- 3. Desarrollar métodos de control en precosecha y postcosecha de la fruta.

Localización: Comayagua y otras áreas con potencial de

exportación. FHIA, La Lima.

Fecha: Inicio: Enero, 1987

Finalización: --

Metodología:

Dinámica Poblacional. La población de adultos de Anastrepha spp. es determinada por medio de trampas McRhail activadas con levadura Torula y Borax. Para la mosca del Mediterráneo se utiliza la trampa tipo ala, fabricada por Loecon e impregnada con una feromona sexual y Stickem como material adherente. Las trampas son revisadas semanalmente. Las trampas NcPhail son activadas semanalmente y los tipo ala mensualmente.

Las poblaciones de larvas son determinadas por medio de recolección periódica de frutas. Las muestras son examinadas en el laboratorio y las larvas son coleccionadas para identificar las especies y nivel de infestación de la fruta.

Biología y Comportamiento. La colección periódica de frutas, especialmente mangos y jobos, se utiliza para mantener cultivos de moscas de la fruta y conducir estudios sobre su biología y comportamiento bajo condiciones de laboratorio y campo.

Métodos de control en precosecha y postcosecha de la fruta.

Manejo de poblaciones de moscas de la fruta por medio de control químico, prácticas culturales, variedades de mango resistentes al ataque de moscas, enemigos naturales. Métodos de control en postcosecha incluyen el uso de a) agua caliente, b) "vacuum packing", c) Banavac, d) inhibidores de etileno, d) otros métodos de control de atmósfera.

Observaciones:

- 1. La especie más importante de mosca que afecta la fruta del mango en Honduras es Anasptrepha obliqua (Fig. 1). De 1823 kg de fruta colectada se obtuvo un total de 3971 adultos, de los cuales el 87% fueron identificados como A. obliqua, 12.7% como A. ludens, y 0.3% como C. capitata (Cuadro No. 3). La especie A. obliqua es la que predomina en la mayoría de las localidades, excepto por el área de Siguatepeque, en donde A. ludens es la especie más importante.
- 2. Los cultivares de mango muestran diferentes grados de susceptibilidad al ataque de moscas de la fruta. En el área de Comayagua, varios cultivares han sido altamente infestados, v.g. Indio, Anis, Kent, Olson, Julie, Lancetilla, mientras que otros como Haden, Manila y Amini presentan bajas infestaciones de larvas (Cuadro No. 4).
- 3. Otras especies de frutas, v.g. Spondias spp. (jobos, jocotes, ciruelas), manzana rosa y guayaba constituyen importantes hospederas del estado larval y contribuyen al mantenimiento y desarrollo de poblaciones de A. obliqua (Cuadro 5,6 y 7). Las especies de Spondias son altamente preferidas, infestaciones larvales de hasta 556 larvas por kg de fruta fueron detectadas en Comayagua (Cuadro No. 6).

Fig. 1. Mosca del mango.

Cuadro No. 3

INFESTACION DE MANGO POR MOSCAS DE LA FRUTA EN

VARIAS LOCALIDADES DE HONDURAS, ABRIL 22-JULIO 31, 1987

	FFUIA	LARVAS			A D U	LTO	
LUGAR	(Kg)	TOTAL	Por/Kg	∞	\mathbf{A} L	М	OTROS
Comayagua	750.6	2644	3.5	8	15	1144	82
Choluteca	27.	779	6.3	0	0	292	7
Yojoa	593.7	3445	5.8	7	0	74	37
El Zamorano	48.7	466	3.1	0	0	102	42
Guaymaca, Fco. Mcrazán	79.6	25	1.6	0	0	29	1
Siguatepeque	57.7	1624	28.1	0	392	50	3
Las Metalias, Atlántida	25.5	270	10.6	0	72	20	1
La Esperanza, Atlántida	4.1	191	40.1	0	26	73	8
Trujillo, Colón	18.1	О	0	0	0	0	0
Olanchito, Yoro	4.0	О	0	0	0	0	o
Guaymas, Yoro	3.6	0	0	0	0	c	o
TOTAL	822.7	9544	5.2	 5	505	345	181

Cuadro No. 4

INFESTACION DE VARIOS CULTIVARES DE MANGO POR MOSCAS

DE LA FRUTA EN COMAYAGUA, HONDURAS, MAYO 22-JULIO 31, 1987

	FRUIA		VAS			LTC	
VARIEDAD	(Kg)	TOTAL	Por/Kg	œ	AL	AO	OTROS
Indio	55.5	817	14.7	2	15	436	29
Anis	52.7	220	23.2	- 1	0	429	30
Manila	48.2	55	1.1	0	0	7	2
Manzano	22.5	45	2.0	0	0	16	5
Kent	4.1	162	39.5	0	0	123	13
Olson	7.3	53	7.3	0	0	31	0
Julie	3.2	45	14.1	0	0	33	0
Lancetilla	2.0	42	21.0	5	0	5	0
Haden	45 .2	66	0.4	0	0	55	3
O. Amini	46.1	4	0.1	0	0	2	0
San Antonio	12.3	11 -	0.9	0	0	0	0
Desconocido	21.6	7	0.8	0	0	7	О
Utila	8.9	4	0.5	0	0	0	0
Rey Jorge	10.9	0	0.0	0	0	0	0
Papaya	4.1	0	0.0	0	0	0	0
TOTAL	750.6	2644	3.5	8	 5		82

Cuadro No. 5

INFESTACION DE GUAYABA POR MOSCAS DE LA FRUTA
EN VARIAS LOCALIDADES DE HONDURAS, JULIO | - SEPTIEMBRE 2, 1987

FRUTA				ADU	LTOS		
(Kg)	TOTAL	Por/Kg	œ	AL	Ю	AS	OTROS
56.4	2 46	38.0	0	0	854	[80	33
37.0	53	26.3	15	0	196	37	3
3.2	100	31.3	0	0	14	30	0
2.6	68	26.	1	0	47	5	2
27.7	074	38.7	1	0	68	9	13
12.7	296	23.3	2	0	, 0	32	0
40.5	1563	38.6	0	0	48	196	1
1.08	5784	32.	19	0	227	666	52
	(Kg) 56.4 37.0 3.2 2.6 27.7 2.7 40.5	(Kg) TOTAL 56.4 2 46 37.0 53 3.2 00 2.6 68 27.7 074 2.7 296 40.5 563	Kg) TOTAL Por/Kg 56.4 2 46 38.0 37.0 53 26.3 3.2 00 3 .3 2.6 68 26. 27.7 074 38.7 2.7 296 23.3 40.5 563 38.6	(Kg) TOTAL Por/Kg CC 56.4 2 46 38.0 0 37.0 53 26.3 5 3.2 00 3 .3 0 2.6 68 26. 27.7 074 38.7 2.7 296 23.3 2 40.5 563 38.6 0	(Kg) TOTAL Por/Kg CC AL 56.4 2 46 38.0 0 0 37.0 53 26.3 5 0 3.2 00 3 .3 0 0 2.6 68 26. 0 27.7 074 38.7 0 2.7 296 23.3 2 0 40.5 563 38.6 0 0	(Kg) TOTAL Por/Kg CC AL AO 56.4 2 46 38.0 0 0 854 37.0 53 26.3 5 0 96 3.2 00 3 .3 0 0 4 2.6 68 26. 0 47 27.7 074 38.7 0 68 2.7 296 23.3 2 0 0 40.5 563 38.6 0 0 48	Kg) TOTAL Por/Kg CC AL AO AS 56.4 2 46 38.0 0 0 854 80 37.0 53 26.3 5 0 96 37 3.2 00 3 .3 0 0 4 30 2.6 68 26. 0 47 5 27.7 074 38.7 0 68 9 2.7 296 23.3 2 0 0 32 40.5 563 38.6 0 0 48 96

CC=Ceratitis capitata AL=Anastrepha ludens AO=Anastrepha obliqua AS=Anastrepha striata

Cuadro No. 6

INFESTACION DE JOBO POR MOSCAS DE LA FRUTA
EN VARIAS LOCALIDADES DE HONDURAS.
JUNIO 30 - SEPTIEMBRE 7, 1987

LUGAR	FRUDA (Kg)	LAR TOTAL	Por/Kg	$\frac{\infty}{\Lambda}$	DUL?	8 O S 80	OTROS
Comayagua	12.9	7 69	555.7	34	О	2299	4 3
Yojoa, Cortés	47.2	20690	438.3	0	0	9574	264
Pantano, Cortés	1.5	243	158.0	0	c	76	lo
Guaymas, Ycro	66.4	11025	[66.]	0	0	1886	5 9
Timsa, Atlántida	126.0	5220	41.4	0	0	2610	130
Ceiba, Atlántida	34.0	2476	72.8	0	0	1238	€2:
TOTAL	288.0	46823	62.6	34	0	7683	2398

CC = Ceratitis capitata

AL = Anastrepha ludens

NO = Anastrepha obliqua

Cuadro No. 7

INFESTACION DE MANZANA ROSA POR MOSCAS DE LA FRUTA
EN VARIAS LOCALIDADES DE HONDURAS.
ABRIL 28 - JULIO 2, | 987

,	FRUTA		VAS	A	DULT	o s	
LUGAR	(Kg)	TOTAL	Por/Kg	CC	AL	AO	OTROS
Yojoa	15.1	747	49.4	34	О	34	17
Siguatepeque	0.7	2	30.0	0	o	5	0
TOTAL	5.8	768	48.6	34	0	346	17

CC = Ceratitis capitata AL = Anastrepha ludens AO = Anastrepha obliqua

Estudio: Estudios de Almacenamiento de mango.

Código: DIO8PH87

Responsables: Pánfilo Tabora

Objetivo:

Como un gran mercado de mango que es, la exportación a Europa no requiere tratamientos, como E.U.A. en control de moscas; entonces, se puede enfocar esfuerzos para lograr exportaciones a Europa. Sin embargo, Europa está más lejos que Estados Unidos de América. Los contenedores embarcados por mar llegan después de 14-16 días a Amsterdam.

En este experimento se pretende estudiar el comportamiento de mango en almacenamiento en condiciones frías durante un largo período y determinar los efectos en la calidad de la fruta.

Localización: La Lima.

Fecha de Inicio: Julio, 1987

Variedades: Haden, Lancetilla

Revisión de Literatura

El mango puede ser almacenado a baja temperatura por más de dos semanas bajo un control del medio ambiente (Lozada, 1969) sin perder sus cualidades normales. Es común tratar las frutas con hypochloruro (Pordesimo, 1984) y (Brown, 1984).

Según Gautem y Lizada (1984) el mango tiene reacciones fisiológicas un día después de envolverlos en bolsas plásticas a 25-31 °C. Al encerar los mangos ocurren efectos de fermentación (Nuevo, Lizada y Pantestio, 1984) dentro del mango.

Metodología:

Las frutas de las variedades Haden y Lancetilla fueron lavadas y se hicieron los siguientes tratamientos:

- A. Todos estaban en 5°C.
- B. Número de días de almacenamiento: 7,14,21,28,35 días.
- C. Envuelto en Saran Wrap.
- D. Con Saran Wrap.

Un grupo envuelto en una bolsa vac-a-pac fue puesto en una caja y se hizo lo siguiente:

- A. Temperatura: en 5°C.
- B. 7, 14, 21 y 28 días de almacenamiento.
- C. Sin uno de Saran Wrap.

Las frutas se abrieron para una inspección de las condiciones internas y calidad de comer.

Resultados y Observaciones:

Las frutas Haden en "saran wrap" duraron hasta 28 días sin madurar como una fruta firme. Todas las frutas almacenadas en 7, 14, 21, 28 días dieron sabores normales, después de madurarlos en medio ambiente (afuera de la refrigeradora). En las frutas de 35 días, el antracnosis desarrolló y el sabor cambió.

Las frutas Lancetilla envueltas en "Saran wrap" duraron hasta 36 días sin cambiar a una calidad mala y se dejaron firme y maduraron normalmente con sabor agradable hasta 36 días.

Las frutas Haden en 'vac-a-pack' duraron hasta 21 días sin desarrollar daños de CO₂ en la concha. El antracnosis no desarrolló hasta 28 días en almacenamiento. Las frutas desarrollaron un sabor con un poquito más de acidez que apareció muy agradable en la fruta, pero después de 21 días, la fruta cambió a una calidad mala con limpieza de pudrición.

Otras observaciones

- 1. Los tubos latíferos de Haden aparecieron con color oscuro después de 21 días. Los de Lancetilla no aparecieron prominentes hasta 28 días.
- 2. Las frutas de testigo (sin envoltura) fueron deshidratadas después de 14 días, pero los envueltos aparecieron lisos.

Conclusiones

Como experimentos preliminares no podemos tener conclusiones fijas, pero seguimos con una esperanza en unos tratamientos que tienen potenciales.

Bibliografía

- 1. Brown, E.O., 1984. Hyprehlorite Washing and Post-Harvest Disease in Carabao mango from three locations. Post-Harvest Research Notes. Vol 1 (4), Oct-Dec. Post-Harvest Training and Research Center. U.P., at Los Baros.
- 2. Gautam, D.M. and M.C.C. Lizada, 1984. Internal Breakdown in mango subjected to modified Atmospheres II Storage Durations and Physicological Effects. Post-Harvest Research Notes. Vol 1 (2). Apr-Jun, 1984 PH TRC. U.P.L.B.
- Lozada, E.P., 1969 "Controled Atmospheres" of mango. M.S. Thesis, U.P.L.B.

- 4. Nuevo, P.A., M.C.C. Lizada & E. B. Pantastico, 1984. Gas Difussion Factors in Fruits III. O_2 , Cl_2 and C_2H levels in waxed and unwaxed carabao mango. PHTRC U.P.L.B.
- 5. Tirtosoekotio, R.H., 1984. Physico Chemical Characteristics of Carabao mango refered with Calcium Carbide. Post-Harvest Research notes. Vol 1(3) Jul-Sept, 1984. PHTRC-U.P.L.B.

Estudio: Ensayos de Introducción y Adaptación

Varietal en la Pimienta Negra.

Código: DI10AG87

Responsables: P. Tábora, M. Zantúa, R. Vaquero

Objetivos:

La pimienta negra es la especia más comercializada en el mundo, con ventas de \$200 millones anuales. Las importaciones hondureñas de esta especie ascienden a \$500,000 anuales. Esta ha sido cultivada en Honduras en los patios de la ciudad de La Lima y en Lancetilla, pero su cultivo no ha sido en gran escala. Según se dice, existe una putrefacción que infesta la planta que la mata en el término de dos años, pero esta condición no ha sido estudiada ampliamente.

Otras posibles áreas para este cultivo son: la Costa Norte y las tierras altas cerca de Yojoa, La Ceiba, Yoro y Santa Bárbara, que reciben cierta cantidad de lluvia durante un largo período del año.

Puede adaptarse tecnología del cultivo proveniente de otros países productores, con algunas innovaciones en cada lugar. La más común consiste en usar postes para las guías y la forma de producir en Honduras, que cuenta con abundantes árboles de madreado (Gliricidi spp), comúnmente recomendado como poste vivo. La Leucaena también puede ser utilizada, aunque no tan extensamente porque no es abundante. En este estudio el objetivo inmediato es determinar el comportamiento de la pimienta negra bajo las condiciones de Honduras.

Localización: La Lima

Fecha de Inicio: Abril 1986

Variedades:

Metodología:

Las variedades de pimienta negra tienden a ser designadas según su origen, pero esto no ha sido definitivo en el estudio comparativo de las variedades. Sumatra tiene la variedad "Balantung", resistente a la pudrición de las raíces. En Sarawak los cultivares "Kuching" y "Sarikei" son conocidos por los agricultores como poseedores de las hojas más grandes. La India cuenta con la variedad "Balancotta", que crece más comunmente, con grandes y largas espigas, y que es conocida por su producción alta y regular, y la variedad "Kalluvalli", de hojas pequeñas y grandes frutos. (Cayo, 1985). Los cultivares de pimienta negra de las Filipinas son conocidos como "Batangas", "Basilan" y "Los Baños".

El cultivo de la pimienta negra en postes ha sido universalmente recomendado. Los postes incluyen árboles tales como Glericidia (Medlangbayan, 1985), Leucaena (Anunciado, 1969) y postes de cemento (Menzi, 1978). En algunos lugares de Sarawak las guías están dispuestas en setos con alambres.

La propagación del cultivo se ha realizado mayormente por el corte de las guías ortotrópicas, pero las estaquillas, abundantes por doquier, son consideradas superiores (Anunciado, 1969). En la pimienta negra enana las terminales son acodadas (Zara, 1975).

Materiales:

- Al menos tres variedades de pimienta negra
- b. Plantas de Leucaena
- c. Cortes de tallo de Gliceridia
- d. Postes de cemento
- e. Alambres
- f. Cabuya
- g. Propagación bajo nebulización
- h. Bolsas plásticas
- Mezcla de suelo esterilizado
- j. una ha de terreno

Métodos:

- a. Las variedades de pimienta negra serán traídas de las Filipinas, Malasia y la India. También se obtendrán materiales localmente. Las guías serán puestas en bolsas de harpillera (humedecidas) para protegerlas de la sequedad. Deberá recogerse suficientes a fin de tener 1 000 cortes por variedad, más o menos 200 piezas, con guías de un m de largo por cada variedad.
- b. Apenas llegadas a Honduras, las guías serán cortadas en dos nudos para su enraizamiento en el cuarto de nebulización. Luego serán colocadas en bolsas plásticas y endurecidas antes de ser trasplantadas.
- c. El sitio elegido para el trasplante deberá ser acondicionado previamente, lo cual significa haber puesto ya los postes de lencaena y glericidia, posiblemente en Guaruma.
- d. El sistema de trasplante será igual, con distancias de 3x3 m. con 3 plantas en cada siembra, produciendo cada grupo cerca de 300 montículos por variedad, suficientes para llevar a cabo tres posibles réplicas y unos 10 tratamientos por variedad.
- d. El sistema de trasplante será igual, con distancias de 3x3 m con tres plantas en cada siembra, produciendo cada grupo cerca de 300 montículos por variedad, suficientes para llevar a cabo tres posibles réplicas y unos 10 tratamientos por variedad.

e. Información a ser obtenida:

- Medición periódica del crecimiento de las guías (mensual)
- 2. Número de nudos después de seis meses
- Características morfológicas de las hojas
- Número de días para el aparecimiento del fruto (parición)
- 5. Cosecha a través del tiempo (tres años) de pimienta seca
- 6. Ataques de pestes y enfermedades
- f. Se proporcionarán cuidados básicos y tratamientos de un buen manejo a las plantas pero sólo para que puedan sobrevivir. Por ejemplo, se dará irrigación solamente como una necesidad de supervivencia y los controles para pestes y enfermedades serán aplicados para que la planta no sucumba a problemas irrevocables.

Bibliografía:

- 1. Anunciado I. 1969; Black Pepper Growing, U.P. at Los Baños.
- Madlangbayan, F. 1985. The Why and How of Black Pepper, Center for Research and Communications, Manila.
- Gayo, R. 1985. Primer on Black Pepper Farming. Center for Res. & Comm. Manila.
- 4. Zara, M. 1975. Personal Communication.
- 5. Menzi, H. 1978. Personal Communication.

Resultados y Observaciones:

En octubre 16 arribaron de Filipinas 3 000 plantas de pimienta negra con cortes enraizados, variedad 'trioicum' y esperamos que un 70% de ellas sobreviva.

Tenemos en la colección una variedad de pimienta negra 'Kalavalli' que viene de la finca de la Col. José Orellana.

Indonesia, Malasia e India han prohibido la exportación de las plantas a otros países competidores, pero esperamos que haya variedades disponibles en el jardín botánico de Singapur, Las Pilipinas.

Estudio: Evaluación Comparativa de las especies

de Palmito en su crecimiento y

producción.

Código: DI09AG87

Responsables: M. Zantúa, P. Tabora, T. Ramírez y H.

Aguilar

Objetivos:

Existen dos grupos de palmitos: a) los de sabor amargo y b) los dulces. Los primeros incluyen las palmas Bacatris y Euterpe de Asia. El grupo de los dulces incluye coco, elaeis, roystonea, sabal, acrocomia and guilielma. Todos ellos han sido extraídos de los sitios donde crecen libremente, fomentándose hoy en día la tendencia a cultivarlos en vista que los recursos naturales han disminuído y que el mercado ha aumentado a pesar de los altos precios. El mercado europeo en la actualidad es más dinámico que el americano, aunque se espera que éste le siga en crecimiento. Es a raíz de este crecimiento que a Honduras se le presenta una oportunidad. Identificándose a sí misma con este cultivo floreciente, Honduras puede tomar la delantera y cosechar beneficios en corto plazo.

Actualmente el estudio sobre palmitos se concentra en la palma Bactris, aún cuando otras palmas ofrecen ventajas adicionales que ésta no tiene. Por ejemplo, las palmas con semillas grandes (v.g. coco y palma de aceite), crecen rápido y dan palmitos grandes. Asimismo, las de tipo ducle (coco y orbigna) son versátiles y pueden ser utilizados en muchas formas de preparación (ensalada, cocinadas con vegetales mixtos, enlatados en porciones, encurtido, etc.).

En este sentido es importante determinar la palma que ofrece el mayor potencial tanto en usos como en producción, utilizando diferentes tratamientos de densidad y fertilización.

Localización: La Lima

Fecha de Inicio: Marzo de 1987

Variedades: Tantas como sea posible.

Revisión de Literatura:

La necesidad de cultivar palmitos ha sido demostrada por dos grandes productores: Brasil y Costa Rica (NAS, 1975). Sin embargo, las investigaciones sobre el cultivo no ofrecen una perspectiva más amplia sobre los diferentes usos y tipos de palmitos relacionadaos con estos usos. No todos los palmitos son comestibles. Algunos son venenosos, como el <u>Orania spp</u>. (NA, 1975) y otros son completamente amargos como ciertos <u>Calamus spp</u>., considerados como manjares por algunas personas (Serrano, 1984) en las Filipinas. El cultivo del palmito puramente para producción ha sido realizado por Costa Rica (NAS. 1975), pero el mismo está basado en el tipo pejibaye.

En Brasil la replantación de palmas es ahora obligatoria (NAS, 1975), fomentándose además su cultivo. Brasil tiene la oportunidad de cultivar palmas sin espina, procedentes del área noroccidental del Amazonas (NAS, 1975).

La idea de sembrar grandes extensiones de palmas para la extracción del palmito procuró incrementar la producción, especialmente de aquellas palmas normalmente sembradas en lugares alejados -tales como el coco y la palma africana-(Tabora, 1978), lo cual podría ser experimentado también con otras palmas.

La lista de palmas con palmitos comestibles es extensa y aquí señalamos las de uso más frecuente: 1) Euterpe, 2) Guilielma, 3) Roystonea, 4) Sabal, 5) Acrocomia, 6) Cariota, 7) Cocos, 8) Astrocaryum, 9) Genonoma, 10) Iriartea, 11) Prestoes, 12) Socrates, 13) Welfia, 14) Orbignya y Altalia spp., 15) Calamus spp., etc. (NAS, 1975; Soriano, 1984; A.A., 1986).

Metodología:

Materiales:

- a. Semillas de palmas o plantitas de edad conocida
- b. Area de al menos 1/2 ha para sembrar las colecciones
- Area de 2 ha para los experimentos
- d. Fertilizantes

Métodos:

- 1. Las palmas más utilizadas comercialmente serán traídas de Lancetilla y aquellas que no pudieran ser obtenidas, serán recibidas de las mejores fuentes, v.g. Estación Biológica Las Cruces, Costa Rica; la Fundación Centro de Desenvolvimiento Industrial CEDIN, en Babea, Brasil y del FORI, en Los Baños, Laguna, Filipinas.
- 2. Todas las semillas serán sembradas y pre-criadas en viveros antes de ser trasplantadas al área experimental, a excepción del coco, que será sembrado directamente. El vivero estará localizado cerca del área experimental.
- Las plantas serán endurecidas y preparadas en pilones antes de ser trasplantadas.

- 4. En Lancetilla deberá haber disponible suficiente cantidad de plantitas de por lo menos cinco especies con edades conocidas, las que serán sembradas en el área experimental.
- El diseño (ver hoja separada).
- Información a ser obtenida:
 - a. Número de tallos útiles
 - b. Peso de la masa cosechada
 - c. Peso del palmito limpio (total)
 - d. Peso de los diferentes pedazos del palmito
 - e. Peso de la masa cortada
 - f. Análisis químico del palmito
- Previo a este experimento agronómico se hará una prueba organoléptica y posiblemente una prueba de mercado.

Fecha de Inicio:

3-4 años

Resultados y Observaciones:

Fueron colectados ocho tipos de palma como plantillas y ya están en el vivero y en bolsas, listas para sembrar en enero, 1988. Las palmas son de cocos, corozo, euterpe, palma africana (guineunsis), palma melanicoca, pejibaye palma real y raffia.

Bibliografía:

- Agricultura de las Américas, 1986. Palmeras Americanas: la Corruba y el Petibay. Agricultura de las Américas. 35 (1): 14-17.
- National Academy of Sciences, 1975. Hearts of Palm. Under-exported Tropical Plants with Promising Economic Value. NAS, Wash. D. C., pp. 48-52.
- 3. National Academy of Sciences, 1975. Barbassú Palm. Underexported Tropical Plants with Promising Economic Value, NAS, Wash. D. C. pp. 89-94.
- Serrano R., 1986. Current Developments on the Propagation and Utilization of Philippine Rattan NSTA Technology Journal, 9 (2): 76-82.
- Tabora, P.C., 1978. The Cocobud. Department of Horticulture, U.P. at Los Baños College, Laguna, Phil. 6 pp.

V. TRABAJOS DE COMUNICACION

Nombre del Estudio: Notas de Diversificación

Titulo: Notes on Corozo
Notes on Coconut

Nut production Perspectives for Honduras A guide to Diversification for Sugarcane

Areas.

Audiencia y Propósito

Las notas son para personal de la FHIA y algunas personas seleccionadas fuera de la FHIA involucradas en la selección de diferentes cultivos para la Fundación. El propósito es hacer circular informaciones sobre los cultivos o tecnologías interesantes que la FHIA necesita saber.

Organización

- El problema y la oportunidad

- Los requerimientos para Honduras y las estrategias

- Perspectiva mundial de la producción y mercado

- La situación en Honduras

Ejecución

Cada nota tiene un patrón o promotor. Después de una conversación sobre el tema, las informaciones son recolectadas y estudiadas. Posteriormente, se elabora un perfil y un manuscrito para distribución.

Evaluación

Las notas son discutidas en pláticas informales.

<u>Seguimiento</u>

El programa prepara nuevas notas de diferentes temas.

Nombre del Estudio:

"Project Formulation System in the FHIA".

Audiencia y Propósito

La guía es para la FHIA, sus clientes y otros organismos que tienen enlaces con la institución. El propósito es desarrollar la capacidad interna de preparación de los documentos de los proyectos y organizar un sistema apropiado para la institución.

Organización de la guía

- Introducción
- Propósito
- El proceso
- Perfil y formulario del estudio/proyecto
- Evaluación - Bibliografía

Ejecución

La guía ha seguido los siguientes pasos:

a. Formulación de requerimientos, b) diseño del sistema,
 c. evaluación del sistema, d) prueba del proceso y e) mejoramiento de la guía.

Evaluación

La guía está siendo usada y mejorada en el proceso.

Seguimiento:

Revisión final del documento.

Estudio: Seminario de FHIA (Diversificación)

Título: El mango para exportación.

Fecha: Agosto 22, 1987

Hora: 1:30-4:30

Lugar: Casa Huéspedes de FHIA, Comayagua.

Expositores: Dr. Pánfilo Tabora

Dr. Manuel Zantua Dr. Joseph Krausz Sr. Hernán Espinoza

Objetivo:

1. Divulgar nuevas técnicas en mango.

 Alentar a los productores del mango sobre el potencial de exportación de la fruta.

 Tener un foro de discusión sobre problemas y posibilidades del cultivo.

Asistentes: Se incluye listado

Seguimiento: Un día de campo

Evaluación: Las personas que asistieron se mostraron

muy interesadas en ver los efectos de la

nueva tecnología en mango.

Estudio: Seminario de FHIA (Diversificación)

Título: Mercadeo de flores de corte en EUA, con

énfasis en importaciones

Fecha: Noviembre 11, 1987

Hora: 0800 - 1200

Lugar: Sala de conferencias de FEPROEXAAH

Expositores: Sr. David Tag - Productor de flores

tropicales

Ing. Mario Lara - Asesor de productividad

de FEPROEXAAH

Dr. Pánfilo Tabora - Líder del Programa

de Diversificación de la FHIA

Dr. Manuel Zantua - Jefe del Departamento

de Agronomía de la FHIA

Objetivo: Fomentar el cultivo de flores tropicales

en Honduras, con fines de exportación.

Asistentes: Se incluye listado.

Seguimiento: Reunión técnica en flores ornamentales.

Nota: También se adjunta la invitación y el programa.

Estudio:

Participación en Seminarios

Titulos:

"Agroforestería", una Técnica de Diversificación, por el Dr. Pánfilo Tabora. Semana Científica, CURLA.

"Plantas Ornamentales" por el Dr. Pánfilo Tabora, FEPROEXAAH y Club de Jardinería de San Pedro.

Fechas:

Junio, 1987 y octubre 23, 1987.

Objetivos:

Dialogar sobre temas pertinentes para promover algunas técnicas.

Clientes/Asistentes:

70 estudiantes y profesionales en la semana científica del CURLA.

30 miembros del Club de Jardinería de San Pedro Sula. **Estudio:**

Reuniones técnicas en la FHIA con

técnicos y grapos agricultores.

Fecha:

Agosto 4, 1987, con el grupo de campesinos Lempira; Septiembre 9, 1987, con el grupo de DRI, Yoro.

Temas:

Cultivos de Diversificación para San

Manuel, Lempira.

Cultivos de Diversificación para Valle de

Morazán, Yoro.

Objetivos:

Obtener los proyectos de ambos dos sitios

y desarrollar una consultoría organizada sobre temas de diversificación.

Asistentes:

Cinco técnicos y campesinos de DRI, Yoro

Siete técnicos y campesinos de San

Manuel, Lempira.

Seguimiento:

Otras consultas

Evaluación:

CURSILLO ROCAP-FHIA

Titulo:

La Producción de mango para exportación

Pecha:

Dic. 5-6, 1987

Hora: 8:30 am - 4:30 pm

Expostitores: Dr. José Mondoñedo - Consultor de ROCAP

Dr. Ramón Barba - Consultor invitado

Dr. Pánfilo Tabora - FHIA Dr. Joseph Krausz - FHIA Dr. Pablo Soto - FHIA Dr. Hernán Espinoza - FHIA

Lic. Rene Lafitte-Frutas Tropicales S.A.

Objetivos:

Promover un moderno cultivo e industria de mango
 Unir personal empresarial, técnico y gubernamental, en una ocasión, con consultores del cultivo.

Asistentes:

Se incluye listado

Sequimiento:

Un día de campo.

Evaluación:

PROYECTO ESPECIAL DE SOYA

INTRODUCCION

En 1987 la importación de derivados de soya ha continuado a la tasa del 16%, para alcanzar un valor estimado de 16.4 millones de Lempiras, cifra que equivale a unas 20 mil hectáreas de soya que Honduras necesita cultivar para ahorrar ese gasto en importaciones.

Durante el año el mercado ha continuado con suministro insatisfecho y los precios del grano se han mantenido en los 720 Lempiras la tonelada. A pesar de la constricción en el suministro de semillas, servicios de cosecha, promoción y asistencia técnica, la productividad ha mejorado y el área mecanizada se ha expandido hacia las 600 hectáreas, concentradas éstas mayormente en la Costa Norte, donde hay más fluidez en los servicios de apoyo al cultivo. Aparte de los varios y muy meritorios esfuerzos dirigidos a fomentar el cultivo y el consumo de la soya por parte del sector más necesitado en huertos familiares, el cambio en 1987 hacia 100 hectáreas adicionales de soya, es apenas tangible. Sin embargo, la mejor ganancia del año ha sido el incremento de los interesados en producir soya, interesados éstos, que en breve serán muchos más al concluir la instalación de la fábrica de INHALSA para procesar 45 000 toneladas de soya.

Al concluir el segundo año de investigaciones, el Proyecto Soya de la FHIA ha expandido sus materiales genéticos en un 67%, lo que aumenta las posibilidades de variedades mejor adaptadas y cada vez más productivas. Como antesala a la liberación de nuevas variedades para el próximo año, un grupo de líneas élite ha entrado a evaluación final. Se ha avanzado en la identificación de fuentes genéticas de resistencia al deterioro de la semilla y aptitud para nodular sin la adición de inoculante. Las principales variedades comerciales han sido purificadas y hay posibilidades para reducir costos en el control químico de malezas y por el uso de densidades de siembra más bajas. Los lotes demostrativos conducidos en unas 110 hectáreas de fincas de productores han sido un excelente vínculo para concientizar a éstos y a sus vecinos sobre las mejores variedades, siembras más oportunas y, en fin, sobre el manejo cada vez más eficiente.

I. PROBLEMAS PRIORITARIOS

Varios factores han limitado principalmente la extensión y la productividad del cultivo. Algunos de estos son:

<u>Servicios de Cosecha:</u> Por motivos de que la soya en fincas grandes necesita cosecharse con máquina, la escasez de este servicio afectó negativamente la ejecución y la extensividad de aquella.

Semilla: La semilla afecta al cultivo de varias maneras: a) Su insuficiencia afecta la expansión; b) el suministro tardío obliga a sembrar tarde, en detrimento de la mayor producción; c) La mayor demanda de semillas es por variedades altas, especialmente por SIATSA 194, y la ausencia de tal semilla desestimula a los productores.

Inoculante: Además de la incertidumbre en el suministro de este insumo, la no adición de éste reduce las alturas de planta y los rendimientos.

Asistencia técnica:

Además de limitado, este servicio está sujeto a la eventualidad de no ser prestado oportunamente, provocando la pérdida de credibilidad en el cultivo.

Subsidios y precios de garantía: Los subsidios y precios de garantía otorgados al algodón y la caña de azúcar han limitado la expansión de la soya, haciendo que las áreas programadas para este regresen a los cultivos subsidiados.

II. OBJETIVOS Y PROPOSITOS

El Proyecto Soya de la Fundación Hondureña de Investigación Agrícola tiene como objetivos la identificación de los principales impedimentos a la expansión de la soya y el desarrollo de alternativas para su implementación dentro del marco de autoabastecimiento nacional y del ahorro de divisas.

Esos objetivos conducen a cuatro campos de acción: mejoramiento genético, producción de básicos, prácticas culturales y demostraciones de finca.

El mejoramiento genético plantea la necesidad de desarrollar variedades mejor adaptadas y cada vez más productivas.

La producción de básicos tiene por finalidad suplir a los productores semilla con simiente genéticamente pura como requisito a la alta calidad de la semilla puesta al mercado.

Mediante las prácticas agronómicas se propugna por el desarrollo de alternativas de cultivo más baratas en pos de mayores ingresos económicos.

Las demostraciones de finca tienen como fin la enseñanza de la práctica del cultivo y la determinación de sus costos y beneficios.

Estudio: Mejoramiento genético de soya.

Código: DI135086

Responsable: Julio Romero

Objetivos: Desarrollar las variedades superiores de

soya.

Localización: Guarumas, Olancho, Choluteca, Comayagua.

Fecha de Inicio: Inicio: Enero, 1986

Metodología:

Los materiales de soya que en 1986 estaban constituidos por 200 introducciones y 978 selecciones individuales, ahora suman 1754 cultivares, mismos que durante 1987 prosiguieron su selección y aumento en 15 lotes y 25 ensayos, de acuerdo al siguiente detalle:

Cuadro No. 8 Materiales de Soya

Material N	0.	Lotes	Ensayo
Nuevas introducciones	74	1	
Nuevas lineas de variedades comerciales	380	4	-
Nuevas líneas de variedades prometedoras	175	7	-
Lineas de variedades comerciales (1986)	978	4	8
Variedades tardías, intermedias y precoces	62	-	5
Variedades promiscuas	85	-	10
Resistencia deterioro de la semilla	_147*		2
Total	1,754	16	25

^{* =} No incluídas en el total

De ese modo, el Proyecto mejoramiento genético de la soya abarcó las siguientes áreas de investigación o subproyectos:

- 1. Introducción
- 2. Desarrollo de lineas
- 3. Selección por adaptación y precocidad
- Selección por aptitud moduladora
- 5. Selección por resistencia al deterioro de la semilla.

Estudio: Introducción varietal

Código: DI135086

Objetivos: Ampliar las fuentes de germoplasma.

Localización: Guaruma I

Fecha de Inicio: Enero, 1986

Tratamientos: 74 cultivares nuevos

Resultados:

En junio de 1987, se recibió del Programa ITTA/EMBRAPA del Brasil un total de 74 nuevos cultivares, incluyendo 51 variedades precoces y 27 promiscuas. En octubre 7, estos fueron sembrados para observación y aumento. A la fecha se encuentran en floración, estando su cosecha prevista para enero 1988.

Estudio: Selección individual

Código: DI135086-2

Objetivos: Desarrollar nuevas variedades

comerciales mediante la selección de

lineas.

Localización: Guaruma I

Fecha de Inicio: Inicio: Enero, 1986

Tratamientos:

a. 175 selecciones individuales de 7802, SIATSA 31, IAC 8, 30214-1-3, Tulamayo, Wright y SIATSA 194 original del INTSOY.

b. 380 nuevas selecciones individuales para el segundo ciclo de purificación varietal de SIATSA 194, SIATSA 194A y DARCO 1.

c. 978 selecciones individuales para el primer ciclo de purificación varietal de SIATSA 194, SIATSA 194A, DARCO 1 y 50206-3-4.

Resultados y Observaciones:

Las 175 y 380 líneas de a y b están actualmente en floración y su cosecha está programada para enero de 1988.

A principios de enero, las 978 líneas de SIATSA 194, SIATSA 194A, DARCO 1 y 50206-3-4 fueron re-seleccionadas, resultando en 43, 43, 31 y 26 líneas selectas de las respectivas variedades. La selección preliminar de esas 143 líneas prosiguió en los ensayos 101, 102, 103 y 104 iniciados en enero 27-28 en la localidad de Guaruma 1. En esas pruebas, siete líneas de SIATSA 194A, siete de DARCO 1, cuatro de SIATSA 194, 2 de 50206-3-4 y dos de Júpiter demostraron buen potencial como variedades comerciales (Cuadros Nos. 9,10,11 y 12). Entre ellas, Júpiter II del Exp. 104, con 4.5 tm/ha y 19.2 cm para altura de vaina; SIATSA 194A-20 del Exp. 102, con 3.6 tm/ha y 18.2 cm para altura de vaina; y DARCO 1-173 del Exp. 101, con 3.6 tm/ha y 16.5 cm para altura de vaina, compararon ganancias de selección del 123.9, 116.0 y 109.5%, en el orden, relativo al mejor testigo comercial SIATSA 194A.

La selección prosigue. Las 21 líneas élite de este grupo, están programadas para pruebas uniformes en el mayor número posible de localidades y así determinar su estabilidad sobre medio ambiente. Los ensayos de Comayagua, Choluteca, Olancho, Olanchito y El Zamorano están actualmente en proceso, faltando únicamente los de la Costa Norte. Se espera que a mediados de 1988 estaremos liberando al menos una variedad comercial como la primera contribución de la FHIA en el campo del mejoramiento genético de la soya.

Cuadro No. 9 Principales características agronómicas para mejores líneas de DARCO l y tres testigos comerciales.

Linea	Densidad Pl/ha	Altura planta	Altura vaina	Acame	100 se- millas	Rendi- miento
	(000's)	(c	m)		(g)	(tm/ha)
DARCO 1 - 173 165 181 331 42 144 148	330 390 377 353 373 353 372	82 84 87 76 81 75 83	16.5 17.2 17.5 18.2 19.2 15.7	1.6 1.9 1.7 1.5 1.5	16.9 16.5 17.1 16.7 17.2 18.2 15.4	3.597 a 3.358 ac 3.298 ac 3.286 ac 3.204 ad 3.154 ac 2.934 at
Testigos STATSA 194A DARCO 1 50206-3-4	340 332 329	84 78 73	14.8 14.7 11.5	2.1 2.1 1.8	21.8 17.6 17.3	3.285 2.943 2.422
PROMEDIOS CV (%)	349	81	16.0	2.0	17.3	2.93 11.86

Cuadro No. 10 Principales caraterísticas agronómicas para mejores líneas de SIATSA 194A y tres testigos comerciales.

Jánea	Densidad Pl/hu	Altura planta	Altura Vaina	Acame	100 se- millas	Rendi- miento
	(a'000)	(0	m)		(g)	(tm/ha)
SIATSA 194A- 20 226 162 151 155 18 189	363 373 359 344 361 367 361	88 87 85 87 79 86 85	18.2 16.2 14.7 15.2 16.5 16.5	2.0 1.9 1.6 1.9 1.5	21.3 20.8 21.3 21.5 21.5 21.5	3.565 a 3.505 ab 3.497 ab 3.415 ac 3.275 ag 3.265 ag 3.177 ah
Testigos SIATSA 194A DARCO 1 50206-3-4	366 318 330	85 81 71	15.2 14.1 10.8	2.2	21.4 17.3 16.6	3.074 2.564 2.294
PROMEDIO CV (%)	345	83	15.0	2.0	20.5	2,96 10.90

Cuadro No. 11 Principales características agronómicas para mejores líneas de SIATSA 194 y tres testigos comerciales.

Linea	Densidad Pl/ha	Altura planta	Altura vaina	Acame	100 se- milles	Rendi- miento
	(000 a)	(c	m)		(g)	(tm/ha)
SIATSA 194 - 165 108 199 197	334 359 324 344	80 90 80 93	15.2 18.5 17.7 19.2	1.6 1.6 1.4 1.5	20.3 21.3 20.6 21.7	3.222 3.179 3.089 2.996
Testigos SIATSA 194A SIATSA 194 DARCO 1	326 331 332	82 83 85	16.2 15.2 16.5	1.7 2.0 2.0	20.5 20.8 17.5	2.950 2.914 2.698
PROMEDIO CV (%)	3324	. 88	16,9	2.4	19.8	2.819

Cuadro No. 12 Principales características agronómicas para mejores líneas de 50206-3-4 y JUPITER y tres testigos comerciales.

Línea	Densidad Fl/ha	Altura planta	Altura vaina	Acame	100 se- mi]las	Rendi- miento
	(000's)	- (c	m)		(g)	(tm/ha)
SIATSA 194A- 20 226 162 151 155 18	363 373 359 344 361 367 361	88 87 85 87 79 86 85	18.2 16.2 14.7 15.2 16.5 16.5	2.0 1.9 1.6 1.9 1.5	21.3 20.8 21.3 21.5 21.5 21.5	3.565 a 3.505 ab 3.497 ab 3.415 ac 3.275 ag 3.265 ag 3.177 ah
Testigos SIATSA 194A DARCO 1 50206-3-4	366 318 330	85 81 71	15.2 14.1 10.8	2.2	21.4 17.3 16.6	3.074 2.564 2.294
PROMEDIO CV (%)	345 -	83 -	15.0	2,0	20.5	2,96 10.90

Estudio: Selección por adaptación y precocidad.

Código: DI135086-3

Objetivos: Identificar germoplasmas localmente

adaptados, con énfasis sobre precocidad.

Localización: Guarumas, Catacamas y Choluteca.

Fecha de Inicio: Enero, 1986

Tratamientos: 21 variedades tardías, 15 intermedias a

precoces, y 25 nuevas variedades.

Resultados y Observaciones:

Un total de 21 variedades tardías y 15 intermedias a precoces fueron comparadas a cinco testigos comerciales en dos series de ensayos conducidos en Guarumas, Catacamas y Choluteca. Las variedades fueron recientemente introducidas de Brasil y en parte suplidas por el Programa Nacional de Soya. Los ensayos fueron establecidos en noviembre 7, agosto 19 y septiembre 6, 1986, en las respectivas localidades. Debido a la siembra tardía y falta de lluvia en Choluteca, los rendimientos de esta localidad fueron excluidos del análisis combinado.

Entre los testigos comerciales, SIATSA 194 y SIATSA 194A, aunque estadísticamente no diferentes de DARCO 1, 7804 y 50206-3-4, produjeron ligeramente mejor (Cuadros Nos.13 y 14). Dicha leve superioridad se vio realizada por sus mejores portes de planta y vaina inferior, que las hacen más adecuadas a la cosecha mecanizada. Asimismo, los testigos no difirieron en períodos de maduración, indicando que la escogencia de uno u otro en cuanto a esta característica es subjetiva.

En promedio de Guarumas y Catacamas, 11 variedades del grupo tardío y cuatro del intermedio a precoz produjeron similar a los testigos comerciales (Cuadros Nos. 13 y 14). Sin embargo, considerando los portes altos de planta y vaina inferior, atributos escenciales para una mejor cosecha mecanizada, solamente siete variedades compararon similar a los testigos más destacados en esas características, SIATSA 194 y SIATSA 194A. Ellas son: IAC 8, SIATSA 194 de orígen INTSOY, PARANOGOIANA, IAC 6, ICA L 109, Tulamayo y SIATSA 31. También, Tropical y Tulamayo 2, aunque menos rendidoras, mostraron excelentes alturas de planta y vaina inferior.

Cuadro No. 13 Comportamiento promedio de 21 variedades tardías y cinco testigos comerciales de soya.

130 8 364 56 130 55 55 55 55 55 55 55		100 100 100 100 100 100 100 100 100 100	Guaruma 2.19 ad 2.30 ab 2.17 ae 1.68 dj 1.83 ab 1.70 dj 2.28 ac 1.70 dj	8 40000	(tm/ha) a 0.18 ab 0.75	rome
194 (INTSOY) 364 56 194 (INTSOY) 392 666 1901ANA, 273 57 303 303 303 304 527 43 64 64 64 64 65 67 67 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68		1000	2 12 2 8 3 8 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	¥20014 00	1.0	7,
364 (INTSOY) 392 666 301ANA 225 443 303 335 50 5115 225 443 444 11na 248 446 8 357 247 444 11na 248 446 8 357 341 1109 222 222 131 255 53 125 275 38 131 204 (INTSOY) 302 56 120 301 312 1204 (INTSOY) 302 56 120 361 56 120 361 56	47,444 25,545 45,44	1000 3000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	400014 00	45.	46
194 (INTSOY) 392 66 301 273 43 302 273 43 303 335 50 271 44 44 1109 247 44 1109 248 46 111 225 248 1125 275 338 125 275 338 127 248 128 46 129 301 302 55 1204 (INTSOY) 302 56 120 361 56 120 361 56 120 361 56 120 361 56		4000 1000 1000 1000 1000 1000 1000 1000	2 22 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	28.22 E	C- L	٥
301 125 1204 (INTSOY) 322 1204 (INTSOY) 322 1204 (INTSOY) 322 1204 (INTSOY) 322 1204 (INTSOY) 322 1204 (INTSOY) 322 1204 (INTSOY) 344 120 1204 (INTSOY) 362 1205 1206 1206 1207 1208 1209 1		100 100 100 100 100 100 100 100 100 100	2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	రాస్తే లే	r	3.47 ab
303 5115 5115 525 513 52 07 247 44 1109 127 129 1204 (INTSOY) 302 1204 (INTSOY) 302 1204 (INTSOY) 344 120 120 1204 (INTSOY) 344 120 120 120 120 120 120 120 120	34 85345 H	100 100 100 100 100 100 100 100 100 100	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	£ 50	v	4.5
5115 92 07 271 44 11na 8 125 129 129 1204 (INTSOY) 120 120 120 120 120 120 120 12	4 85545 H	100	3 12 2 8 8 8 8	£ 88	~	97.
271 44 11ma 24,3 11ma 24,8 14,4 11ma 24,8 16,9 16,9 17,9 18,9 18,0 1	25045 122	108	2 2 2 2 2 2 2 3	6.6	~	9
125 125 131 1204 (INTSOY) 361 126 127 128 131 1204 (INTSOY) 362 139 139 139 139 139 139 139 139	25545 155	801	3 22 28	8	0.37	2.96 ad
11na 341 41 248 46 357 51 109 325 57 1125 222 231 125 275 38 131 303 35 131 303 35 130 302 268 34 120 208 34 120 302 58 120 344 43 120 361 56 194 339 62	346 453	011	3 2 2 2 8	2	0.23	2.92 ad
109 109 109 109 109 109 109 109	451 131		25 29	8	0.50	2.73 ad
109 11 125 125 127 129 131 301 301 302 304 304 317 304 317 317 317 318 319 320 344 43 344 43 344 43 344 43 344 43 344 43 344 43 344 43 344 43 344 43 34 34	2 123	108	38 78	\$	0.11	67
109 125 125 127 128 131 232 231 612 138 131 205 205 34 301 1204 (INTSOY) 302 344 43 129 120 320 344 43 212 344 43 212 344 43 212 344 43 212 344 43 212 344 43 344 43 344 43 344 43 344 43 344 43 344 43 344 43 344 43 344 43 344 43 344 43 344 43 344 43 344 443 344 443 344 344 443 344 344 443 344 344 443 344 344 443 344 344 344 345 344 344	12.51	110	28	₹.	0.05	89
125 222 53 125 275 38 131 303 35 131 303 35 130 208 34 120 208 34 120 302 58 120 344 43 120 344 43 120 364 45 120 364 45 120 361 56	12.	109		84.	44.0	.63
125 222 53 275 38 131 303 34 301 208 34 301 302 34 129 344 43 120 361 66 194 339 62	12.	112	8	3.28 bd	0.13	2.59 bd
275 38 301 208 34 301 302 34 120 302 58 129 344 43 120 361 66 194 339 62		108	88	8	0.57	.59
131 301 301 208 34 317 317 318 318 328 34 43 212 40 212 40 212 40 212 40 318 40 40 40 40 40 40 40 40 40 40	12.	106	35	.72	0.45	25
301 208 34 317 51 1204 (INTSOY) 302 58 129 344 43 120 344 43 120 361 56 194 339 62	'n	100	1.72 dj		44.0	4.
1204 (IMTSOY) 302 58 129 344 43 212 40 120 361 66 194 339 62	10.	109	0	.23	0.21	33
1204 (IMTSOY) 302 58 344 43 212 40 120 361 66 194 339 62	13.	108	(O)	œ	0.05	
129 344 43 212 40 120 361 66 03 39 62 194 339 62	7.	107	88	3	60.0	5
212 40 361 56 56 37 194 62 1944 57	ב	106	1.53 £3	2.69 bd	0.18	H
120 38 39 194 32 55 194 56 57	10.	110	56	.83	0.39	6
1944 322 57	13.	101	99	-65	0.31	
194 339 62 1948 322 57				1		
1944 322 57	16	105	2.27 ac	ď,	~1	
	16	107	33	64.	•	
366 46	13	103	32		0.20	2.72 ad
50	12	105	020	5	_	
64	11.3	110	1.77ect	45	~	2.60 ad
T 302 50	10.5	107			0.27	2.69
		'	16.2	25.5	•	25.0

Simbolos = Seguido de la misma letra son iguales. Rango Múltiple de Duncan.

Cuadro No. 14 Comportamiento promedio de 15 variedades precoces y cinco testigos comerciales de soya.

	Densidad	Altura	Altura	Dias a		Rendimiento	iento	
Variaged	(P1/ha)	planta	vaira	cosecha	Guarumas	Catacamas	Choluteca	Promedio
	(000,8)	(010)	(6.9)			(tan/ha)	(E	
30255-1-7	599	53	e,	107	71	.26 a	1.15	56
::::::::::::::::::::::::::::::::::::::	284	67	è	106	47	.95	1.13	.71 a
30210-1-3	363	(I)	'n	108		.03 a	11.1	99.
Julazayo 2	232	75		106	2	3.18 ac	0.79	2.64 af
7302	314	23	L)	106	1.93 dh	-4.	0.89	13
Impresed Pelican	267	51	67	103	62	2.71 bd	0.47	2.17 05
g	300	51	14.4	107	1.61 81		0.79	
50044-4-6	316	77	m	103	33	56	86. O	5
	340	44	e)	105	2	25	0.53	g
Scuador 2	247	8	r;	112		2,00 dg	0.29	66
Tulenayo	275	5		107	.24 a	e 69	0.65	- 65
50044-4-9	323	45	13.0	105	1.78 ei	1.58 43	0.32	1.83 fg
3 315	257	37	ö	103	F 04.	500	C.24	54.
52 1274	250	37	ö	103	138	339	0.30	28
Sable	137	43	r-i	108	.52	-2	0.21	8,
2000							,	
46T Y22Y12	334		u v	\circ	٠.	۲.	ω.	2
べきのし べいしくけい	332			O	52	8	٠,	.95 a
1000	317		-31	0	T.	16	e	.75 a
1,0550	202	23	-31	C	8	69.	0.76	2.33 ag
50206-3-4	274		12.3	103	Š			.2
Promed to 8	200	51	13.6	106	6	2.52	0.73	2.21
G.V. (3)		i		'	14.9	22.0	i	6.1

"Sfrivolos = Seguido de la misma letra son iguales. Rango Múltiple de Duncan. "Nom: Días a cosecha y rendimientos, promedios de Guaruma + Choluteca y Guaruma +Catacanas, respectivamente.

Las variedades promediaron maduración intermedia; no obstante, PARANOGOIANA, Tropical y Ecuador 2 resultaron ligeramente tardías. Esto fue más notorio en Guarumas, donde si bien fue forzada a madurar, PARANOGOIANA mostró hábito tardío, característica ésta que la hace muy apreciada para continuar su mejoramiento.

La información del grupo de 25 variedades nuevas, aunque preliminar por provenir de una sola localidad, ofrece buenas posibilidades (Cuadro No. 15). Nos referimos a Barú, GO 83-27175, GO 83-25060, GO 83-21591 y GO 83-21609, variedades que además de sus buenas alturas de planta mostraron excelente proliferación y tendencias a madurar tardíamente.

Cuadro No. 15 Principales características agronómicas para 25 nuevas variedades y cinco testigos comerciales.

Variedad	Densidad Pl/ha	Altura planta	Altura vaina	Días a cosecha	Peso 100 semillas	Rendi- miento
	(000's)	(cm)		(g)	(A.m.
			-			•
Barú	407	75	14.2	115	15.6	2.559 a
SIATSA 194 INTSOY	370	72	17.8	101	20.7	2.126 ab
GO 83-18014	126	60	16.0	115	16.7	2.074 ac
GO 83-27175	225	73	15.0	111	14.9	1.980 bd
Timbira	301	55	14.5	108	17.2	1.947 bd
Tulamayo	321	68	19.0	102	22.9	1.846 be
IAC 6 RR.NN.	306	65	14.8	105	16.4	1.839 be
GO 83-25060	285	67	15.7	110	15.3	1.825 be
GO 83-21591	304	69	15.0	108	15.6	1.818 bf
Wright	274	60	15.8	104	21.0	1.812 bf
GO 83-22772	141	60	14.1	111	16.0	1.757 bf
GO 83-21609	291	71	16.5	108	14.6	1.666 bg
GO 83-27756	239	60	15.5	111	18.4	1.624 bg
IGH-23	200	65	9.1	110	18.4	1.614 bg
IGH-23	296	68	12.1	103	16.6	1.553 ch
GO 83-18791	209	61	16.2	110	17.4	1.548 ch
IAC 75 5115	310	65	13.7	103	19.1	1.547 dh
ACC 2120	359	73	14.0	97	7.4	1.524 dh
DOKO	297	44	8.2	108	18.9	1.486 dh
F1 75-9207	279	68	14.0	104	17.0	1.364 ei
SIATSA 1204 INTSON	165	70	15.7	104	19.9	1.297 fj
BR - SG 33	185	41	9.2	108	18.0	1,200 gi
IAC 7 RC3	259	42	7.7	108	16.7	1.057 hj
M 79-4	167	40	7.0	109	15.0	0.930 11
GO 81-11174	215	48	12.6	97	16.0	0.913 j
Testigos						
SIATSA 194	364	71	16.7	100	20.3	1.949 bd
7804	342	62	9.5	103	17.0	1.867 be
SIATSA 194A	305	70	17.2	101	21.0	1.817 bf
50206-3-4	317	66	10.0	101	15.9	1.651 bg
DARCO 1	286	65	13.2	101	16.1	1.482 dh
Promedio	271	62	13.5	106	17.2	1.657
CV (%)	-	-	-	-	-	18.2

Símbolos : Seguido de la misma letra son iguales. Rango Múltiple de Duncan

Estudio: Selección por promiscuidad

Codigo: DI135086-4

Objetivos: Identificar germoplasmas que nodulen con

Rhizobio nativo.

Localización: Guarumas, Catacamas y Choluteca.

Fecha de Inicio: 1986

Tratamientos: 85 variedades

Resultados y Observaciones

Un total de 85 variedades promiscuas fue evaluado por adaptación y aptitud para nodular sin la adición de inoculante, en tres ensayos iniciados en noviembre 8-11, 1986, en Guarumas. A los 86-88 días en las series inoculadas (Exp. 5,7 y 9), y a los 74-78 días en las series no inoculadas (Exp. 6,8 y 10), se midió la altura de las plantas y se evaluó la nodulación en una muestra de cuatro plantas por parcela. En cada ensayo se incluyeron tres testigos comerciales. La condición de los ensayos fue de regimen de lluvia con dos riegos de auxilio. El suelo era virgen, en cuanto a soya, para las series no inoculadas.

Con un sub-grupo de 10 variedades, ocho de ellas incluidas en los Exp. 5 y 6 de Guarumas, se iniciaron pruebas en agosto 19 y septiembre 5 en las localidades de Catacamas y Choluteca, respectivamente. La evaluación de la nodulación tomó lugar a los 51 y 61 días en el orden de las localidades. El análisis conjunto para Guarumas, Catacamas y Choluteca se hizo disgregando los datos correspondientes de los ensayos 5 y 6 de Guarumas. Debido a la siembra tardía, falta de lluvia y atrasos en la cosecha del ensayo no inoculado de Choluteca, así como al deslave del inoculante al ensayo no inoculado en Catacamas, el comportamiento de las variedades resultó algo variable y a veces falto de consistencia; aún así, los datos muestran tendencias interesantes.

La información general de los ensayos indica que la falta de inoculación deprimió las alturas de planta, los períodos de maduración, el peso de 100 semillas y los rendimientos; estos últimos se redujeron entre la mitad y los dos tercios. Esta respuesta -que pone de relieve la importancia de la inoculación, - parece explicarse por el grado de nodulación de los ensayos.

En efecto, el subgrupo de las series inoculadas promedió 10.0 nódulos/planta y 86.9% nodulación, comparado a 1.1 nódulos/planta y 30.0% nodulación para los ensayos no inoculados (Cuadros Nos. 16 al 19). Similar comparación para el grupo de las 85 variedades sembradas con y sin inoculante en Guarumas promedió 5.9 vs. 0.66 nódulos/planta y 95.4 vs. 18.7% nodulación (Cuadros Nos. 20 al 25).

Dentro del subgrupo de las 10 variedades sembradas en Guarumas, Catacamas y Choluteca, TG x 342-365C y TG x 742-02D se perfilaron como las más prometedoras al ser sembradas sin inoculante (Cuadro Nos.16 al 19). La primera mostró alturas de planta e índices de nodulación relativamente altos (51.0 cm y 2.6 nódulos/planta) en tanto que la segunda, si bien baja en nodulación, se destacó por su altura de planta y hábito tardío (Cuadro 19).

A pesar de la poca uniformidad en la nodulación y en la incidencia de ésta, en las series de Guarumas, incluyendo las 85 variedades promiscuas, sólo una variedad mostró consistencia en esos parámetros y en producir rendimientos aceptables al ser sembradas sin inoculante (Cuadros Nos. 20 al 25). Dicha variedad, entrada 22 de los Exp. 9 y 10, denominada TG x 814-30D, cuando inoculada y no inoculada comparó 10.1 vs. 6.8 nódulos/planta, 100.0 vs. 87.3% nodulación, y 2.31 vs. 1.38 tm/ha (Cuadros Nos. 18 y 19). Aparte del buen comportamiento agronómico de esta variedad, su índice de 6.8 nódulos/planta cuando no inoculada, comparó igual a ligeramente superior al promedio de 5.9 nódulos/planta de los Exp. 5,7 y 9, mismos que recibieron inoculación. Al parecer, TG x 814-30D es un buen prospecto para transferir sus buenas características a los principales tipos comerciales.

Ser Cuadro No. 16 Principales caractarísticas para ocho variedades promiscuas de soya y tres testigos comerciales, sembradas con y sin inoculantes. Guarumas, 1986/1987.

Variedad	Densi- dad	Altu- Dias		100 se- Nódu- millas los/P	Nodu- los/Pl	Nodu- lación	Rendi- miento	Densi- dad	Densi- Altu- dad ra Pl	Dias	Dias 100 se- Cose millas	Nódu- los/Pl	Nodu- lación	Rendi- miento
	Pl/ha	(ca)		(8)		(%)	(tm/ha)	Pl/ha	(ca)		(8)		8	(tay/ba
			CON	INOCULANTE	2					SINI	SIN INCCULANTE	篮		
575 × 279	287	46a	101	23	6.8ac	100	1.57bc	371	48ac	66	ខ្ល	0.26	ij	0.67b
2 x 342	361 269	23kg	99	24	3.6c	82	1.77bc	345	23ab 44bc	\$ 5	12	0.8ab	oba 37ab	0.63b
C240 205 x EC	282	636	901	16	7.1ac	96	1.69bc	264	45bc	107	25	0.9ab	40ab	0.60bc
x 727 x	240	36.00	2 5	2 5	8.6	3 6	2,63	308	2 6	134	3 '		1140	1.08a
306	180	£3bc	112	13	8.0ab	800	1.67bc	210	45pc	126	:	9.3	18ab	0.80ak
x 325	. 52	37d	306	18	7.1ac	\$	0.444	011	29d	108	13	0.18	2	0.27c
Tosticos L.300 l	221	50bc	102	18	4.5ac	100	1.210	232	100	104	#	0.26	36	0.48b
	258	48cd 55bc	105	18	5.0ac	900	1.71bc 1.99ab	2,45	38cd 38cd	104	15	0.1b 0.3b	7b 29ab	0.50b 0.54b
Fremedios 3.7. (%)	236	7.7	106	16	6.3	97	1.65	258	77	108	п'	26.7	19	34.3

Densidad: en miles de plantas/ha. Zimbolos: Seguido de la misma letra son iguales. Rango Múltiple de Duncan. NOTA: Aturas de planta y conteo de nédulos, a los 88 y 75 días en los ensayos inoculados y no inoculados, respectivamente.

Principales características para 10 variedades promiscuas de soya y cinco testigos comerciales, al sembrados con y sin inoculantes. Catacamas, 1986. promiscuas de Cuadro No. 17

Variedad	Densi-	Altura planta	Dias a cesecha	%6du- los/Pl.	Nodu- lación	Rendi- miento	Densi- dad	Altura	Ofas a cosecha	Nédu-	Nodu- lación	Rendi
	Fl/ha	(ca)			3	(tat/ha)	Pl/ba	(cm)			છ	Œ.
		CON	N INOCULANTE	ANTE					SIN INC	SIN INOCULARTE		
× 2	407	တပ	900	9.1 a	100 a	9.64	392	47 a	900	0.9df		0.76
7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	377	hel	96	1.8 bc	23.5 23.5 23.5 24.5 25.5 25.5 25.5 25.5 25.5 25.5 25	0.63	407 404 404	42 ac	86	1.8cf	75 ac	.38%
TG x 3C7 0475	393	32 40 40 40	001	5.9 8.0 8.0	100 a	0.80	431	42ac 41 bd	102	2.4ce	74 ac 28 c	0.958
× 71.5	844	· vo	100	0.40		0.65	364	41 bd	130	1.5cf	_	0.396
TG x 3C6 C36D	024	36 bc	901	0.40	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0.65	45.2	40 pq	125	0.941	54 ac	0.725
x 311 627	415	9	100	4.0 ac		0.20	481		707	0.6ef	34 bc	0.76
x 255	325	o١	100	4.1 ac		0.52	346		102	1.1cf		0.75
× %	382	-3	100	5.1 ab	100 a	0.78	475		00	1.0df	43 ac	0.919
Testinos	291	0	100	5.0 ab	100	0.40	466		100	2.6bd		C.83b
7504	411	N	90	1.2 00	230	0.65	403		86	2.504		0.741
'n	273	O	100	3.2 ac	50 a	0.61	236		100	0.5f		1.158
467	331	.o.	99	. ta		96.0	37.5	37 cd	102	o	63	1.15a
170	417	0	700	- 1	73 a	7.C	454	- 1	102	g	100 a	1.34a
Fromedios C.7. (%)	387	ω, II./	100	3.3	33	6.77	403	6	105	1.7	£ 5	31.8

Densidad : en miles de plantas/ha Eimbolcs : Seguido de la mismu letra son iguales. Rango Múltiple de Duncan. NCTA : Alturas de planta y contaç de nódulos a los 58 días después de la piembra.

Cuadro No. 18. Principales características para 10 variedades promiscuas de soya y cinco testigos comerciales, cuando sembradas con y sin inoculantes. Choluteca 1986. Cuadro No. 18

Variedad	Densi- dad	Altu- ra Pl	Dias	100 se- rilles	Nédu- los/pl	Nodu- lación	Rendi- miento	Densi- dad	Altu- ra PL	Días Cose	100 se- millas	N6du- los/Pl	Nodu- lación	Rendi- mient
	Pl/ha	(cm)		(3)		88	(tm/ha)	Pl/ha	(ca)		(³)		8	(ta/ha
			CON	INOCULANTE	81					SINI	INOCULANTE	읩		
x 219 192	196	6364	115	12		100	0.37	213	58ab	115	6	-	9	64.0
×	213	75a	115	::		\$	0.17	200	57ab	105	ខ្ល	6.0	۹ 20:	0.36
x 342 375	185	22 0	115	# :	1	00	0.45	195	56ab	105	2	0	7	0.27
TG × 307 C473	184	65bc 57cd	115	13	19 ac	001	0.33	182	58ab	205	0√∞	0.5 0.0	ر و و	0.13
x 742 C2	210	6500	118	. 61		001	96.0		643	, ;;		-	"	44.0
3050	202	61bd	116	13	33 0	76	0.25	176	59ab	115	00	0.6 ab	14 ab	0.25
x 311 625	192	549	115	1	16 ac	200	0.51	213	57ab	100	::	2	5	0.32
x 325 1	215	62bd	115	15		700	84.0	191	55ab	105	13	н	7	0.23
855 6	183	60bd	115	12		ま	0.38	190	54p	105	9	0.4 ab	ננ	0.15
Testigos														
1 05.	203	62bd	315	ů3		100	0.37	507	60ab	105	::		٣	0.17
.	198	61bd	115	13		200	0.55	195	55ab	105	ខ្ព		0	0.20
7506-3-4	155	65bc	115	13		8	0.63	179	56ab	105	#		~	0.23
(1)	210	69 x b	115	18	16 ac	100	0.36	163	530	105	13	1.0 ab	20 ab	0.25
5:533 19	201	66ac	115	18		100	0.31	124	58ab	105	12		~	0.26
Frenedio	151	63	115	13	17	66	0.38	189	57	108	10	2.0	r.	0.27
<i>;</i>	•	σ.	•		16	'	•	•	6	•		70	65	'

Densidad: en miles de plantas/ha. Eficiolos: Seguido de la misma letra son iguales. Rango Múltiple de Duncan. ECIA-- Altura de planta y conteo de nódulos a los 61 días después de la siembra.

Cuadro No. 19 Comportamiento promedio de 10 variedades promiscuas y cinco testigos comerciales de soya, cuando sembradas con y sin inoculante. Guaruma y Choluteca 1986/87. Resumen de Cuadro 5,6,7. Cuadro No. 19

Variedad	Densi- dad	Altu- ra Pl	Dias	100 se- millas	Nédulo por Pl	Nodu-	Rendi- miento	Densi- dad	Altu- ra Pl	Días	100 se- millas	Nédulo por Pl	Nodu- lación	Rendi- miento
	Р1/ћа	(cm)		(8)		88	(tm/ha)	(Pl/ha)	(cm)		(3)		88	(ta/b
		J	CON INO	OCULANTE	sal.					SIN	SIN INOCULANTE	NIE		
x 219 19	333	46	105	12.5	12.1	100.0	0.86	325	K G	105	9.3	9.6	15.9	49.0
TG x 342 3750	277	, 1 , 0	100	12.4	8.0	16.6	100	325	24	9,5	00.0		27.5	9.0
x 709 06	285	22	107	13.4	12.0	100.0	1.02	276	94	112	, o		15.8	0.55
x 742 0	562	62	113	12.1	10.2	72.6	1.18	462	45	126	0.11	9.0	25.1	99.0
x 305 x	303	Z \$7	109	13.5	6.6	100.0	0.85	347	χ φ 4 4	122	19.3	9.9	19.6	0.59
TG x 825 150 TG x 856 663	199 282	94,	107	16.5	10.7	97.9	0.58	332	44	105	12.9	0.9	22.3	0.53
Testigos DARCO 1	238	2	106	15.5	7.4	100.0	68.0	301	94	103	11.2	6.0	2.7	64.0
7804 50206-3-4 SIATSA 194	305	\$ 4Z 82	107	18.5	9.2	83.4.0	989	206	6 1 2	100	12.7	6.0	13.4	0.63
IATSA	192	25	102	20.2	8.6	91.0	1.1	287	44	104	14.7	2.1	17.0	0.73
Promedio	277	51	201	14.2	10.0	9.68	0.84	288	24	107	10.9	1.1	30.0	0.58

Cuadro No. 20 Comportamiento agronómico para variedades promiscuas precoces con inoculante. Guaruma 1, 1986 Postrera. Exp. 5

Variedad	Densidad (Pl/ha)	Altura	Dias a		Nodulo/ planta	Nodula- ción	Rendi- miento
		(cm)		(g)	1/	(%)	(tm/ha)
TG x 742 02D TG x 780 2F TG x 709 06D TG x 342 356C TG x 307 047D	240 274 224 361 282.5	85.7 52.5 52.7 53.2 63.0	121 107 106 100	12.2 20.5 14.9 14.7 15.6	8.6 ab 4.0 ei 8.2 ac 4.2 di 7.1 af	100.0 100.0 100.0 87.5	2.620 a 2.294 nb 1.901 bc 1.773 db 1.687 ce
rg × 306 03b rg × 849 37b rg × 342 375b rg × 279 192c rg × 849 8b	180 264 269 287 322	53.0 43.5 50.2 45.7 48.2	112 102 100 101	13.4 12.1 13.8 13.1 13.6	8.0 ad 5.2 ag 3.6 fi 6.8 af 7.9 ae	100.0 100.0 87.5 100.0 100.0	1.669 ce 1.621 ce 1.619 ce 1.570 ce 1.485 cf
TG x 824 49D TG x 849 7D TG x 813 13D TG x 813 24D TG x 824 6D	343 302 287 277 279	40.7 43.0 38.0 40.5 40.5	103 101 106 102 106	13.6 13.5 15.5 14.1 15.6	2.0 hi 5.1 ag 4.4 ci 3.8 fi 5.0 gb	81.2 100.0 93.7 100.0 100.0	1.438 cf 1.423 cf 1.405 cf 1.324 cf 1.283 dg
TG x 816 42D TG x 813 8D TG x 854 83D TG x 854 28E TG x 849 225D	210 219 262 262 173	45.2 40.0 52.5 45.2 42.5	105 105 104 104 104	13.9 13.9 12.3 11.6 14.8	4.0 fi 3.2 gi 7.0 af 3.8 fi 4.2 di	81.2 87.5 100.0 87.5 93.7	1.281 dg 1.121 dh 1.057 di 1.015 ei 0.972 fj
TG x 293 61E TG x 825 16D TG x 816 45D TG x 803 97D TG x 802 99D	115 263 122 215 272	35.7 48.0 30.0 47.7 22.7	101 105 102 99 100	19.4 15.6 15.8 11.6 9.3	8.1 ad 1.9 i 9.3 a 2.7 gi 4.0 fi	93.7 62.5 100.0 75.0 87.5	0.951 fj 0.916 fj 0.726 gk 0.692 hk 0.555 ik
rg x 802 97D rg x 863 4D rg x 825 15D rg x 710 3E	215 144 57 34	38.2 25.2 37.7 30.7	100 100 106 106	11.9 13.9 18.0 11.8	5.4 ag 3.6 fi 7.1 af 4.9 bh	100.0 100.0 93.7 100.0	0.533 ik 0.457 jk 0.437 jk 0.221 k
Testigos SIATSA 194A 50206-3-4 DARCO 1	258 219 221	55.5 47.7 50.2	105 105 102	22.4 18.0 18.1	7.0 af 5.0 bg 4.5 bi	100.0 100.0 100.0	1.990 bc 1.710 cd 1.214 dh
Promedio C.V. (%)	233	45.2	104	14.6	5.3 18.6	94.1	1.280 25.9

^{1/} Después de transformación mediante $\sqrt{X+0.5}$

MOTA: Seguidos de la misma letra son iguales. Rango Múltiple de Duncan.

Siembra: Noviembre 8, 1986 ; Evaluación de nodulación: Febrero 3, 1987.

Cuadro No. 21 Comportamiento agronómico para variedades precoces sin inoculante. Guaruma 1, 1986. Postrera. Exp. 6 $\underline{1}/$

VARIEDAD	Densidad (Pl/ha)	Altura planta	Días a cosecha		Nõdulo/ planta	Nodula- ción 2/	Rendi- miento
	(000's)	(cm)		(g)	2/	(%)	(tm/ha)
TG x 742 02D TG x 780 2F TG x 306 03D TG x 709 06D TG x 342 356C	308 300 210 247 311	53.5 46.2 45.2 42.0 53.5	134 104 126 110 104	12.4 10.6 10.1 11.0	0.23 bd 0.17 bd 0.28 bd 0.38 bd 2.17 a	10.7 cf 7.5 df 17.7 bf 19.0 bf 66.2 ab	1.079 a 0.850 ab 0.796 bc 0.773 bd 0.739 be
TG x 279 1920	345	47.7	99	9.7	0.17 bd	10.7 cf	0.670 bf
TG x 342 375D		43.7	94	10.4	0.84 bd	38.7 ae	0.635 bg
TG x 307 047D		45.2	107	10.5	0.95 ad	40.4 ad	0.599 bh
TG x 849 37D		33.2	104	8.0	1.26 ac	55.2 ac	0.515 di
TG x 710 3E		43.0	110	9.6	0.20 bd	2.6 ef	0.491 ei
TG x 849 8D	317	41.5	104	8.8	0.55 bd	14.6 bf	0.480 ei
TG x 813 13D	296	29.5	104	9.8	1.01 ad	44.8 ad	0.453 fi
TG x 824 49D	411	32.7	102	9.0	0.52 bd	38.7 ae	0.444 fi
TG x 854 28E	245	43.5	105	9.3	0.36 bd	6.7 df	0.443 fi
TG x 849 7D	287	40.2	104	7.9	0.31 bd	10.7 cf	0.421 fi
TG x 824 6D	261	31.2	104	9.8	2.55 a	19.0 bf	0.412 fi
TG x 813 24D	285	23.2	103	9.3	0.23 bd	14.6 bf	0.379 gi
TG x 813 8D	305	35.2	99	8.5	0.95 ad	52.0 ad	0.396 gj
TG x 825 16D	261	37.0	104	11.9	0.35 bd	23.8 af	0.356 hj
TG x 854 830	283	38.2	104	8.8	0.66 bd	19.0 bf	0.348 hj
TG x 816 42D	213	39.2	105	10.0	0.20 bd	2.6 ef	0.347 hj
TG x 293 61E	111	36.7	104	12.1	2.53 a	86.0 a	0.334 hj
TG x 803 97D	186	39.5	102	9.5	1.32 ab	38.6 ae	0.327 ij
TG x 802 99D	333	26.0	97	6.6	0.20 bd	6.7 df	0.300 ij
TG x 849 225D	224	31.7	102	10.9	0.00 d	0.0 f	0.294 ij
TG x 863 45	269	28.5	94	9.1	0.00 d	0.0 f	0.292 ij
TG x 825 15D	110	29.0	108	12.9	0.12 cd	7.5 df	0.275 ij
TG x 802 97D	206	26.2	95	8.8	0.27 bd	7.5 df	0.147 j
TG x 816 45D	124	25.5	99	10.6	1.08 ad	27.9 ac	0.142 j
Testigos SIATSA 194A 50206-3-4 DARCO 1	234 204 232	40.2 33.0 37.7	104 104 104	12.4 14.4 11.5	0.31 bd 0.12 cd 0.16 bd	29.4 ae 7.5 df 2.6 ef	0.535 ci 0.504 di 0.479 ei
Promedio C.V. (%)	256 -	38.0 -	108	10.1	0.64 30.8	22.8	0.477 32.5

^{1/} Siembra, Noviembre 10,15486; evaluación de nodulación, Enero 24,1987

^{2/} Después de transformación según: / X + 0.5

NOTA: Seguidos de la misma letra son iguales. Rango Múltiple de Duncan.

Cuadro No. 22 Comportamiento agronómico para variedades promiscuas intermedias con inoculante. Guaruma 1, 1986 Postrera. Exp. 7 1/

VARIEDAD	Densidad (Pl/ha)	Altura planta	Dias a cosecha		Nodulos /planta	Nodula- ción	Rendi- miento
	(000's)	(cm)		(g)	<u>2</u> /	(%)	(tm/ha)
TG x 814 28E	296	60.0	107	14.6	10.8 ab	100.0	2.364 a
TG x 790 1F	256	60.5	110	14.7	4.6 fg	100.0	2.330 nb
TG x 302A 37	266	60.0	106	12.0	4.5 fg	87.5	2.311 ac
TG x 758 2E	260	52.7	110	14.5	4.8 eg	100.0	2.149 ad
TG x 802 111E	285	52.7	100	10.6	5.0 eg	93.7	1.897 be
TG x 302A 47E	293	70.0	109	12.1	8.8 ae	93.7	1.866 ce
TG x 709 51E	255	45.2	105	19.1	6.6 bf	100.0	1.860 ce
TG x 814 25E	289	47.7	108	14.0	9.9 ad	93.7	1.855 de
TG x 709 50E	229	48.0	106	16.3	5.9 cg	93.7	1.812 de
TG x 814 22E	295	50.5	106	14.2	11.5 a	100.0	1.768 de
TG x 814 23E	289	50.5	105	14.7	10.5 ab	100.0	1.740 df
TG x 814 18D	301	43.0	106	14.1	5.5 dg	100.0	1.716 dg
TG x 814 36E	232	52.5	107	13.9	10.1 ac	100.0	1.716 dg
TG x 802 182D	349	45.0	102	13.0	6.6 bg	100.0	1.620 eh
TG x 856 3E	262	45.2	102	16.2	3.1 g	93.7	1.518 eh
TG x 813 7D	277	40.2	101	14.2	3.3 fg	81.2	1.490 ei
TG x 856 38E	207	37.7	101	16.4	4.4 fg	93.7	1.310 fi
TG x 813 15D	259	28.0	102	14.2	3.5 fg	87.5	1.299 fi
TG x 856 66E	203	38.0	102	17.0	3.9 fg	81.2	1.287 gh
TG x 302A 103E	212	38.0	102	15.9	4.3 fg	100.0	1.278 gj
TG x 813 38D	338	37.7	100	11.4	1.0 h	68.7	1.249 hj
TG x 825 20E	270	43.2	106	14.3	3.4 fg	87.5	1.221 hj
TG x 573 125D	217	40.5	100	13.3	4.5 fg	100.0	1.214 hj
TG x 573 59D	230	37.7	102	12.8	3.9 fg	87.5	1.077 ij
TG x 560 34E	123	32.5	107	18.4	3.7 fg	81.2	1.005 j
TG x 803 99E	236	35.5	100	13.9	3.7 fg	87.5	0.942 j
TG x 573 129D	153	32.5	101	14.3	4.7 fg	100.0	0.926 j
Testigos SIATSA 194A 50206-3-4 DARCO 1	285 216 226	47.7 50.2 50.5	102 105 105	23.4 17.2 17.5	6.7 nf 5.4 eg 5.8 eg	100.0 100.0 100.0	1.911 ac 1.766 de 1.550 eh
Promedio C.V. (%)	251	45.8	104	14.9	5.9 12.2	93.7	1.602 16.3

^{1/} Siembra: Noviembre 10, 1986 ; Evaluación de nódulos: Febrero 3, 1987.

^{2/} Después de transformación según: / X + 0.5

MOTA. - Seguido de la misma letra son iguales. Rango Múltiple de Duncan

Cuadro No. 23 Comportamiento agronómico para variedades promiscuas intermedias sin inoculante. Guaruma 1986 Postrera. Exp. 8 1/s

VARIEDAD	Densidad (Fl/ha)	Altura	Días a cosecha		Nodulos /planta	Nodula- ción 2/	Rendi- miento
	(000's)	(cm)		(g)	2/	(%)	(tm/ha)
TG x 302A 37 TG x 302A 47E TG x 758 2E TG x 814 36E TG x 790 1F	295 294 334 329 361	79.7 79.0 53.2 62.0 72.5	110 117 119 111 109	11.8 11.4 10.3 10.3	0.60 ab 1.05 ab 0.29 ab 1.51 a 0.17 ab	10.7 b 27.9 ab 14.6 ab 63.2 a 7.5 b	1.450 a 1.284 ab 1.191 ac 1.123 ad 1.116 ad
TG x 856 3E TG x 814 22E TG x 814 23E TG x 802 182D TG x 814 25E	315 344 332 323 308	59.7 61.2 60.0 52.0 61.5	103 110 109 105 110	12.6 11.6 10.1 10.5 9.7	0.28 ab 0.72 ab 1.28 ab 0.61 ab 0.57 ab	14.6 ab 26.0 ab 27.9 ab 17.7 ab 10.7 b	1.072 ae 1.070 ae 1.049 af 0.980 bg 0.894 bg
TG x 856 38E TG x 709 51E TG x 813 7D TG x 814 28E TG x 302A 103	255 282 335 300 E 206	43.2 47.2 56.0 50.5 50.5	102 108 98 110 102	12.1 12.6 9.6 9.7 12.5	0.58 ab 0.46 ab 0.16 ab 0.81 ab 0.12 ab	14.6 ab 14.6 ab 4.7 b 13.5 ab 7.5 b	0.858 bh 0.842 bh 0.833 ch 0.811 ch 0.798 ch
TG x 709 50E TG x 802 111F TG x 803 99E TG x 814 18D TG x 813 15D	237 306 258 325 350	46.2 66.2 34.0 44.5 40.2	108 106 102 110 98	9.0 10.5 10.3 9.8	0.17 ab 0.56 ab 0.06 b 0.57 ab 0.16 ab	10.7 b 27.9 ab 2.6 b 17.7 ab 2.6 b	0.753 ch 0.714 dh 0.662 eh 0.608 fh 0.598 gh
TG x 856 66E TG x 573 125D TG x 573 59D TG x 813 38D TG x 573 129D	245 234 296 353 195	41.7 45.5 43.0 43.7 34.5	102 102 102 101 102	10.7 9.5 9.3 8.9 10.2	0.00 b 0.06 b 0.00 b 0.11 ab 0.74 ab	0.0 b 2.6 b 0.0 b 2.6 b 2.6 b	0.597 gh 0.597 gh 0.585 gh 0.578 gh 0.560 gh
TG x 825 20E TG x 560 34E	286 183	41.7 36.5	1.05 102	8.8	0.28 ab 0.00 b	17.7 ab	0.485 h 0.478 h
Testigos SIATSA 194A 50206-3-4 DARCO 1	240 272 265	43.5 47.2 55.0	102 102 104	14.4 11.2 13.4	0.49 ab 0.17 ab 0.28 ab	23.8 ab 7.5 b 4.7 b	0.612 fh 0.808 ch 0.849 bh
Promedio C.V. (%)	287	51.7	106	10.8	0.43 39.2	13.3 88.0	0.829 31.0

^{1/} Siembra: Noviembre 11, 1986 ; Evaluación de nódulos: Enero 23, 1987.

^{2/} Después de transformación según: /X + 0.5

NOTA. - Seguido de la misma letra con iguales. Rango Múltiple de Dunca.

Cuadro No. 24 Comportamiento agronómico para variedades promiscuas tardías con inoculante. Guaruma 1, 1986 Postrera Exp. 9 1/

VARIEDAD	Densidad (Pl/ha)	Altura planta	Días a cosecha	100 se- millas	Nődulos /planta	Nodula- ción	Rendi- miento
	(a'000)	(cm)		(g)	<u>2</u> /	(%)	(tm/ha)
TG x 814 30D TG x 780 4E TG x 293 32E TG x 307 84E TG x 311 62F	304 276 302 307 334	61.2 55.5 57.0 64.0 50.7	107 106 103 107 100	13.3 14.3 11.3 16.2 13.5	10.1 ab 8.3 be 8.7 ae 6.9 be 4.8 ce	100.0 100.0 100.0 100.0	2.314 a 2.035 ac 1.900 ad 1.881 ae 1.757 bg
TG x 709 8E TG x 302A 55D TG x 293 12E TG x 573 225D TG x 573 6C	288 298 211 265 257	58.2 56.5 46.5 52.0 50.5	100 103 106 100 101	14.4 16.7 10.8 13.3 15.0	7.6 be 7.5 be 8.2 be 4.7 ce 4.6 ce	100.0 100.0 100.0 93.7 100.0	1.690 cg 1.678 cg 1.610 ch 1.550 dh 1.547 dh
TG x 252 1C TG x 293 46E TG x 311 59E TG x 573 160D TG x 943 11C	233 134 213 350 184	57.5 51.2 46.2 50.7 49.5	105 106 100 100	18.7 12.5 13.4 12.9 17.4	4.8 ce 14.7 a 7.1 be 7.1 be 8.8 ab	100.0 100.0 93.7 100.0 100.0	1.543 di 1.505 dj 1.445 dk 1.430 dk 1.421 el
TG x 802 62F TG x 307 127E TG x 856 33E TG x 302A 106E TG x 863 69E	277	45.5 60.5 55.0 47.5 45.2	105 103 100 104 101	15.5 13.6 17.0 16.1 13.4	4.5 ce 7.2 be 5.5 be 5.1 ce 4.7 ce	100.0 100.0 93.7 93.7	1.413 el 1.392 fl 1.345 gl 1.340 gl 1.158 hm
TG x 711 01D TG x 863 38E TG x 859 8D TG x 863 26E TG x 859 9D	156 213 210 161 244	43.7 44.0 50.5 37.0 41.2	106 105 100 102 100	18.1 13.1 12.0 13.0 12.2	4.5 ce 5.6 be 6.0 be 5.5 be 4.6 ce	100.0 93.7 100.0 100.0	1.069 im 1.057 jm 1.024 km 1.003 km 0.994 km
TG x 293 68E TG x 299 7F TG x 802 252D TG x 802 126D	78 158 296 100	42.5 40.7 32.5 22.2	106 100 100 106	12.3 12.6 14.0 12.6	7.7 be 4.2 de 5.6 be 4.0 e	100.0 100.0 100.0 87.5	0.957 lm 0.775 mn 0.727 mn 0.478 n
Testigos SIATSA 194A 50206-3-4 DARCO 1	262 277 272	57.5 51.2 50.7	103 105 100	21.8 16.3 17.2	8.1 be 5.9 be 7.5 be	100.0 100.0 100.0	2.195 ab 1.855 af 1.584 ch
Promedio C.V. (%)	240	49.2	103	14.5	6.6 19.0	98.4	1.427

^{1/} Siembra: Noviembre 10, 1986 ; Evaluación nódulos: Febrero 3, 1987.

^{2/} Después de transformación según: / 0.5 + X

NOTA .- Seguido de la misma letra son iguales. Rango Múltiple de Duncan.

Cuadro No. 25 Comportamiento agronómico para variedades tardías sin incoulante. Guaruma 1, 1986. Postrera. Exp. 10 1/

VARIEDAD	Densidad (Pl/ha)	Altura	Días a cosecha		Nõdulos /planta	Nodula- ción 2/	Rendi- miento
	(000's)	(cm)		(g)	2/	(%)	(tm/ha)
TG x 814 30D	330	56.2	114	11.4	6.80 a	87.3 a	1.377 a
TG x 943 11C	200	54.7	108	12.7	4.23 b	53.1 ac	1.144 ab
TG x 573 160D	335	53.7	102	10.1	0.56 ce	14.6 cf	1.101 ac
TG x 252 1C	260	56.5	104	13.8	0.22 e	7.5 df	1.082 ad
TG x 293 32E	268	52.0	106	8.5	2.13 bd	31.6 ae	1.058 ae
TG x 311 62F	255	43.7	106	10.5	0.06 e	2.6 ef	1.038 ae
TG x 293 12E	262	61.2	107	8.6	1.01 ce	38.0 ae	1.015 ae
TG x 302A 55D	292	55.0	106	11.6	0.11 e	4.7 ef	0.977 af
TG x 293 68E	171	41.7	108	11.9	0.58 ce	17.7 bf	0.832 ag
TG x 573 60	268	47.2	105	11.6	0.06 e	2.6 ef	0.801 bg
TG x 302A 106	D 260	44.0	105	12.2	0.12 e	7.5 df	0.794 bg
TG x 311 59E	245	41.5	104	10.0	0.57 ce	10.7 cf	0.769 bg
TG x 307 84E	282	56.5	106	8.6	0.94 ce	27.9 ac	0.762 bg
TG x 709 8E	293	50.2	103	8.3	0.35 de	13.5 cf	0.737 bg
TG x 293 46E	176	48.7	107	9.5	1.52 be	47.3 ad	0.726 bg
TG x 859 9D	290	45.2	102	9.2	0.58 ce	19.0 bf	0.714 bg
TG x 863 38E	228	46.2	105	11.1	0.00 e	0.0 f	0.688 bg
TG x 802 62F	358	34.0	104	12.0	0.73 ce	26.0 af	0.676 bg
TG x 863 69E	297	38.0	102	8.8	0.06 e	2.6 ef	0.653 bg
TG x 856 33E	256	50.7	102	13.1	0.24 de	14.6 cf	0.651 bg
TG x 573 225D	312	38.5	102	9.1	0.00 e	0.0 f	0.575 cg
TG x 780 4E	270	39.5	103	11.4	0.74 ce	4.7 ef	0.573 cg
TG x 863 26E	194	25.2	103	8.0	0.24 de	6.7 df	0.548 cg
TG x 299 7F	197	52.0	103	9.2	0.66 ce	19.0 bf	0.547 cg
TG x 711 01D	145	37.0	105	14.4	0.68 ce	7.5 df	0.532 dg
TG x 307 127E TG x 802 252D TG x 859 8D TG x 802 126D	285 271	42.0 32.5 40.5 24.7	105 102 102 109	9.5 6.2 8.4 8.6	0.31 de 0.62 ce 2.62 bc 1.30 ce	10.7 cf 19.0 bf 74.5 ab 16.2 cf	0.520 dg 0.508 eg 0.434 fg 0.364 g
Testigos SIATSA 194A 50206-3-4 DARCO 1	299 272 266	48.0 40.0 50.7	102 105 102	14.1 10.3 12.4	0.24 de 0.47 de 0.61 ce	6.7 df 19.0 bf 26.0 af	0.867 ag 0.970 af 0.828 bg
Promedio C.V. (%)	256 -	45.2	105	10.5	0.92 39.4	19.9	0.777 41.5

^{1/} Siembra: Noviembre 11,1986 ; Evaluación nódulos: Enero 24-30, 1987.

^{2/} Después de transformación según : / X + 0.5

NOTA.- Seguido de la misma letra son iguales. Rango Múltiple de Duncan.

Estudio: Selección por resistencia al deterioro

de la semilla.

<u>Código:</u> DI135086-5

Objetivos: Identificar fuentes de resistencia al

deterioro de la semilla.

Localidades: Guarumas (invernadero)

Fecha de Inicio: Enero, 1986

Tratamientos: 56 variedades no promiscuas y 84

promiscuas.

Resultados y Observaciones

El proceso para la identificación de resistencia al deterioro de la semilla para un lote de 56 variedades no promiscuas cosechadas en 1986 y 1987, y para otro lote de 84 variedades promiscuas cosechadas mayormente en 1987, ha consistido en envejecer la semilla almacenándola en condiciones no controladas y periódicamente probar su declinación germinativa. Las pruebas de germinación correspondientes a 1986 han concluido en tanto que las de 1987, aún están en proceso.

El envejecimiento de la semilla cosechada en 1986 abarcó los ocho meses comprendidos entre junio 1986 y enero 1987, caracterizados por su alta humedad relativa. De manera similar, el envejecimiento hasta la fecha de las semillas de 1987 ha incluido los ocho meses transcurridos entre marzo a octubre, de los cuales los tres primeros son secos en tanto que los cinco restantes son altos en humedad ambiente. Las pruebas de germinación se llevaron a cabo en invernadero, utilizando tierra esterilizada y dos repeticiones de 50 semillas por variedad. Las pruebas para las semillas de 1986, se efectuaron a los cuatro, cinco y ocho meses, en tanto que las correspondientes a la semilla de 1987 fueron iniciadas a los ocho meses.

En el grupo de variedades no promiscuas, las semillas de 1986 y 1987 después de ocho meses de envejecimiento declinaron su habilidad germinativa en promedio al 3.1 y 29.2%, respectivamente; no obstante, dos de las 56 variedades equivalente al 3.6% de ellas, aún germinaban algo más del 75% (Cuadro No. 26). Esta aparente discrepancia se debe posiblemente a que el período de envejecimiento para las semillas de 1987 incluyó únicamente cinco meses de alta humedad relativa; de ahí que al parecer, los datos de 1987 comparan mejor a aquellos de 1986 para ese período de cinco meses. De ese modo, en 1986, cinco de las 58 variedades ó sea el 6.9% de ellas germinaba algo más del 75%, cinco meses después del envejecimiento. En resumen, la identificación de fuentes de resistencia al deterioro de la semilla en este grupo parece posible, aunque a una frecuencia relativamente baja.

En el grupo de las variedades promiscuas, nueve de ellas procedentes de 1986 y 84 de 1987, la declinación germinativa parece más lenta y al mismo tiempo la frecuencia de tipos resistentes aparenta ser mayor. En efecto, a los ocho meses una variedad de 1986 aún germinaba 55%; en tanto que a los cinco meses, dos de las nueve variedades ó sea el 22.2%, germinaba arriba del 75% (Cuadro No. 27). Para 1987 la frecuencia de variedades germinando arriba de 75% alcanzó el 55.9% de ellas, esto cuando el envejecimiento se prolongó por ocho meses, cinco de los cuales eran altos en humedad relativa. Esta alta frecuencia de genotipos resistentes a la fecha indica con mucho optimismo que pasados unos dos a tres meses más de envejecimiento, hará posible la identificación de esta importante característica para transferirla a las principales variedades comerciales.

Cuadro No. 26 Distribución de frecuencia para la aptitud germinativa de variedades no promiscuas con cinco a ocho meses de envejecimiento.

	_						ació					
		12	25	35	45	55	65	75	85	95	Media	Rango
a. evalu	ación	(5 m	eses									
	9	7	7	10	9	7	5	1	2	1	37.7	0 - 92
	0	0	1	1	1	1	1	0	0	0	46.8	16 - 69
a. evalu	ación	(8 m	eses)								
	52	3	2	_ 1·	0	0	0	0	0	0	3.1	0 - 31
	5	0	0	0	0	0	0	0	0	0	2.2	2 - 9
ine.												
a. Eval	uació:	1 (8	mese	s)								
	14	- 8	9	10	3	7	3	1	0	1	29.2	0 - 91
	0	0	0	0	1	1	1	2	0	0	63.0	41 - 78
	a. evalu	a. evaluación 52 5 la. Evaluación	9 7 0 0 a. evaluación (8 m 52 3 5 0 la. Evaluación (8	9 7 7 0 0 1 a. evaluación (8 meses 52 3 2 5 0 0 la. Evaluación (8 mese	52 3 2 1 5 0 0 0 0 14 8 9 10	9 7 7 10 9 0 0 1 1 1 a. evaluación (8 meses) 52 3 2 1 0 5 0 0 0 0 la. Evaluación (8 meses) 14 8 9 10 3	9 7 7 10 9 7 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 7 7 10 9 7 5 0 0 1 1 1 1 1 a. evaluación (8 meses) 52 3 2 1 0 0 0 5 0 0 0 0 0 0 la. Evaluación (8 meses)	9 7 7 10 9 7 5 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	9 7 7 10 9 7 5 1 2 0 0 1 1 1 1 1 0 0 a. evaluación (8 meses) 52 3 2 1 0 0 0 0 0 5 0 0 0 0 0 0 0 0 la. Evaluación (8 meses) 14 8 9 10 3 7 3 1 0	9 7 7 10 9 7 5 1 2 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0	9 7 7 10 9 7 5 1 2 1 37.7 0 0 0 1 1 1 1 1 1 0 0 0 46.8 a. evaluación (8 meses) 52 3 2 1 0 0 0 0 0 0 3.1 5 0 0 0 0 0 0 0 2.2 la. Evaluación (8 meses)

Cuadro No. 27 Distribución de frecuencia para la aptitud germinativa de variedades promiscuas con cinco a ocho meses de envejecimiento.

	Cen	tro	de c	lase	(ge	rmin	ació	n %)				
Material	5	15	25	35	45	55	65	75	85	95	Media	Rango
Cosecha 1986: 2a. evalua	ción	(5 m	eses)								
9 variedades	0	0	1	0	3	2	1		1	0	53.4	22 - 80
Testigo (Acc 2120)	0	0	0	. 0	0	0	0	0	0	1	92.0	92
Cosecha 1986: 3a. evalua	c16n	(8 m	neses)								
9 variedades	2	3	3	- 0	0	1	0	0	0	0	19.7	3 - 54
Testigo (acc 2120)	0	0	1	0	0	0	0	0	0	0	28.0	28
and the same of												
Cosecha 1987: la. evalu	ación	1 (8	mese	s)								
84 variedades	0	2	2	_ 2	3	12	16	20	21	6	68.7	12 - 95
Testigo (Acc 2120)	0	0	0	0	0	0	0	0	0	1	90.0	90
rescigo (ACC 2120)												

Estudio: Prácticas agronómicas

<u>Código</u>: DI155087

Responsable: Julio Romero

Objetivos: Desarrollar técnicas de cultivo a costo

más reducido.

Sub-Estudio: Control químico de malezas en ausencia

de caminadora.

Código: DI155087-1

Objetivos: Determinar alternativas más baratas para

el control químico de malezas.

Localización: Guarumas y Choluteca

Fecha de Inicio: Inicio: febrero 4, 1986 en Guarumas;

septiembre 5, 1986 en Choluteca.

Tratamientos:

Combinaciones de Dual, Lasso, Prowl y Treflan con Maloran, Dyanap y Sencor; para un total de 12 tratamientos incluyendo dos testigos, uno sucio y otro limpio. El ensayo fue en bloques al azar con cuatro repeticiones y parcelas efectivas de dos surcos x 6.0 m x 0.6 m = 7.2 m². El ensayo de Guarumas fue conducido bajo condiciones de riego y baja prevalencia de malezas, en tanto que el de Choluteca fue establecido tarde, en terreno con algo de Crotalaria y abundante coyolillo, maleza ésta que impidió a la soya llegar a la cosecha. En ambos ensayos se evaluó la icidencia de gramíneas y hojas anchas y se registró alturas de planta, fitoxicidad y otras características relevantes.

Resultados y Observaciones:

El efecto de las 10 mezclas sobre el control de gramíneas y hojas anchas fue apenas levemente inferior al efecto del testigo limpio (Cuadro No. 28); sin embargo, debido a recientes restricciones en la fabricación de Maloran y a la naturaleza muy preliminar de la información procedente de las combinaciones con base en Prowl y Treflan, las mezclas Dual-Sencor, Lasso-Sencor, Dual-Dyanap y Lasso-Dyanap resultan al presente las más prometedoras.

Cuadro No. 28 Efecto promedio de combinaciones de herbicidas sobre el control de malezas y los rendimientos de la soya, en ausencia de Caminadora.

Tratamiento	Costo	Hojas Guaruma	Hojas ancha aruma Cholut.	Guaruma Cho	Cholut.	Fitotoxi	Fitotoxicidad Guaruma Cholut.	Altura planta Guaruma Cholu	Cholut.	Rendimier Guarumas
(Mezcla pre-energente/ha)	(Lps/ha)	ਜੀ		ζì		•	7.	9	(co) <u>1</u> /	(ta/ha)
Dual 2.CO lt + Maloran 2.00 Kg Dual 1.43 lt + Sencor 0.36 Kg Dual 1.43 lt + Dyanap 5.00 Lt	177	1.5be 1.5be	1.5ab 1.5ab 2.0b	1.5ab 1.2ab 1.6b	1.0a 1.2ac 1.1ab	1.1a 1.1a 1.2a	1.0a	25ab 27ab 26ab	27ac 29ab 26ad	4.19 a 4.61 a 4.35 a
Lasso 2.87 lt + Maloran 1.68 Kg Lasso 2.37 lt + Sencor 0.36 Kg Lasso 4.00 lt + Dyanap 5.00 Lt	14d 125 081	1.5bc 1.2ab 1.4ab	1.7b 1.6ab 2.0b	1.4ab 1.4ab 1.2ab	1.0a 1.0a	1.0a 1.1a 1.0a	1.0a 1.6ab	30a 28ab 29ab	27ac 24bd 29a	4.30 a 4.47 a 4.45 a
Prowl 1.75 lt + Sençor 0.36 Kg Prowl 1.75 lt + Dyanap 5.00 Lt Treflan 1.7 lt + Sencor 0.36 Kg* Treflan 1.7 lt + Dyanap 5.00 Lt	113	1.2ab 1.2ab 1.0a 1.4ab	1.75 1.75 1.6ab	1.1ab 1.1ab 1.2ab	1.6bc 1.2ac 1.5ac	1.1a 1.0a 1.4a	1.6ab 1.4ab 1.5ac	26ab . 27ab . 16c 27ab	27ac 26ad 23cd 22d	4.68 a 4.60 a 3.73 a 4.76 a
Testigos Siempre limpio (control manual) Sucio (mo control de malezas)		1.0a 1.9c	1.0a 2.7c	1.0a 2.5c	1.0a 4.6d	1.0a 1.2a	1.0a	245 28ab	28ab 25ad	4.63 a 4.48 a
Trometios		1.4	1.8	1.4	20.8	1.1	1.3	26 10.5	26 9.5	4.44

Lecturns a los 32 días en Guarunas y 40 días en Choluteca. Escala visual 1.0 a 5.0; donde: 1.0 = muy limpio y sin daño, ..., 5.0 = muy ennalezado o con fuerte daño fitotóxico.

L'itles = Seguido de la misma letra son iguales. Rango Múltiple de Duncan.

Seccificaciones: Dual 960EC, Lasso 4EC, Maloran 50WP, Sencor 70MP, Prowl 320E. · = In aplicación incorporada.

Aunque las cuatro mezclas promediaron igualmente efectivas sobre las gramíneas y hojas anchas, las combinaciones conteniendo Sencor tendieron a ser más tóxicas en los suelos livianos de Choluteca, y al mismo tiempo las combinaciones con Dyanap tendieron a ser más débiles sobre la crotalaria pero sin efecto tóxico sobre la soya. En tal sentido, como recomendación general, especialmente donde no se conoce el suelo o se sospecha de manchas arenosas, las mezclas Dual-Dyanap y Lasso-Dyanap a costos respectivos de 113 y 130 Lps/ha (79 y 91 Lps/Mz) parecen más seguras. En especial la mezcla Lasso-Dyanap, ha sido extensamente utilizada en soya y maní. Lo anterior no excluye el uso de Sencor en suelos desde francos a más pesados.

Sub estudio: Baja densidad de siembra

Código: DI155087-2

Objetivos: Determinar las posibilidades para

ahorrar costos por la utilización de más

bajas densidades de siembra.

Localización: Guarumas

Fecha de Inicio: Enero 28-29, 1987

Metodología:

El ensayo consistió en la siembra de las variedades SIATSA 194A y DARCO la poblaciones equivalentes a 262, 288, 328, 380 y 433 mil semillas variables por hectárea. Se utilizó un diseño de parcelas divididas con seis repeticiones y parcelas efectivas de dos surcos x 5.0 m x 0.61 m = 6.10 m 2 . Se registró el número de plantas cosechadas, las alturas de planta y vaina inferior, el peso de 100 semillas, el acame y los rendimientos.

Resultados y Observaciones:

La densidad de 328 mil plantas/hectárea, producto de sembrar 25 semillas por metro lineal de hilera, resultó en alturas de planta y vaina, incidencias de acame y rendimientos de grano estadísticamente iguales a aquellos provenientes de más altas densidades de siembra, principalmente 380 y 432 mil plantas por hectárea (Cuadro 28).

Para los respectivos pesos de 100 semillas, 16.4 y 20.7 gramos de las variedades DARCO 1 y SIATSA 194A del Cuadro No. 29, la densidad de 328 mil semillas viables corresponde a 65.7 kg/ha de la primera y 85.0 kg/ha de la segunda, a costos respectivos de 66.96 y 84.32 Lps/ha (Cuadro No. 30). De ese modo, la densidad de 328 relativo a la de 432 mil semillas viables por hectárea resulta en un ahorro de 88.34 - 66.96 = 21.37 Lps/ha (14.90 Lps/mz) para la variedad DARCO 1 y en 111.31 - 84.32 = 26.99 Lps/ha (18.82 Lps/mz) para SIATSA 194A. Si bien esas diferencias debidas exclusivamente al factor semilla son pequeñas, éstas se incrementarán al agregarles las pérdidas por acame a más altas densidades.

En resumen, a pesar de que la información es preliminar, hay posibilidades para reducir costos de producción por el uso de densidades más bajas en las cercanías de las 328 mil semillas viables por hectárea, equivalente a depositar 25 semillas al 80% de germinación por cada metro lineal de hilera.

Cuadro No. 29 Efecto promedio de cinco densidades de siembra sobre las principales características de dos variedades de soya. Ensayo densidad baja de siembra.

Factor	Total	Densidad Visble*	Actual	Altura	Altura	Acame	Peso 100 semillas	Rendimiento
	(Sezil	(Semillas/ha) (miles)	(pl/ha)	(cn)	(uo)		(8)	(tal/ha)
VARIEDADES (V) DARCO 1 SIATSA 194A	423	338	300	76	17	1.90	20.7	2.886
Diferencia		١.	8	ns	នួ	13	ns	80
DENSIDAD (D) 33 semillas/m de surco	541	433	360 a	80 8	17 a	59	18.7 a	
: 56	475	380	311 b		17 a	75	20,00	
25	361	225 25 25 25 25 25 25 25 25 25 25 25 25	315 b 278 c	77 ab 76 b	16 a	1.75 bc	18.2 a	2.996 be
20 "	328	262	251 c		16 a	7.	13.6 a	2.815 c
INTERACCION (V x D)	•	•	10	ns su	ន្តព	su	911	ns
C.V. (v) ; (%)	١.,	٠.	11.2	2.9	23.9	46.0	3.8	22.0

· = Densidad viable considerando el 80% de germinación de la semilla

Sfebolos : ns = no significativo

Literales : Seguido de la misma letra son iguales. Rango múltiple de Duncan.

Cuadro No. 30 Estimados de semilla y valor de ésta para dos variedades de soya cinco densidades de siembra. Ensayo Densidad Baja de Siembra; Guaruma 1, 1987 Verano.

Den	Densidad		Total 1/	1/ Viable 2/	(kg/ha))	Valor 5/ (Lps/ha)	Ckg/ha;	valor 5/ (Lrs/ha)
					DARCO 1	-	SINES 194A	V hói
33	serillas/n de	Surco	541	433	89.0	58.34	112.2	111.31
29	•	=	475	380	78.2	77.58	96.5	97.72
25		=	410	328	67.5	96.99	35.0	84.32
22		7	361	288	7.55	58.93	54.6	74.30
20			328	262	24.0	53.57	56.2	94.79

1/Sin cosiderar el poder germinativo de la semilla 2/Considerando la germinación al 80%.
3/Con base en el peso de 16.5 gramos por 100 semillas 4/Con base en el peso de 20.7 gramos por 100 semillas 5/Al precio de 45.0 Lps./quintal (Lps. 0.99 por kg).

Estudio:	Lotes demostrativos y registros económicos.
Códigos	COM5087
Responsables:	J. Romero/Departamento de Economía Agrícola.
Objetivos:	Enseñanza y aprendizaje en la práctica del cultivo y determinación de costos y beneficios de éste.
Localización:	Sectores de El Progreso y Guaymas, Yoro, y sector Lamaní en Comayagua.

Fecha de Inicio: Enero, 1986

Metodología:

El proyecto consistió en establecer lotes comerciales de soya en fincas de productores en una extensión total de 112 hectáreas (159.5 manzanas). Los lotes fueron conducidos por los propios productores, limitándose nuestra participación al consejo técnico en visitas periódicas. En tres de las fincas el Departamento de Economía Agrícola llevó registros económicos. Los lotes fueron como sigue:

Cuadro No. 31 Registros económicos de lotes.

Productor L	ocalización	Area (M2)	Inicio	Rendimiento Estimado	
Victor Méndez*		15.5	1/2/87	DARCO 1	37 27
Omar Suazo* Franklin Rub í	Guaymas Guaymas	40 9	1/5-20 1/25/87	DARCO 1 SIATSA 194	55
César Cáliz* Israel Martine	Guaymas z Progreso	20 9	11/5/87 11/15/87	SIATSA 194A SIATSA 194	28 26
Coop.Las Rosas	Guaymas	10	1/28/87	SIATSA 194	24
Proy.Horticola Agro Intrernal		10 40	Mayo Mayo	SIATSA 194 Regional 4	36
		159.5			33.4

^{* =} Se llevaron registros económicos.

Resultados y Observaciones:

No obstante que únicamenre las fincas del Ing. Victor Méndez y del Proyecto Hortícola de FHIA/FEPROEXAAH de Comayagua fueron eficientemente manejadas, la soya en general desarrolló altura adecuada para la cosecha con máquina; la calidad de la cosecha fue buena y en su totalidad vendida a ALCON para concentrados; los rendimientos fluctuaron entre 24 a 55.5 quintales/manzana para un promedio estimado de 33.4 qq/mz, lo cual es excelente.

Sub Estudio: Registros Económicos

Código: COM5087-2

Responsable: Carlos M. Zacarías

Objetivo: Establecer un sistema de contabilidad

permanente y diferenciable de los costos e ingresos del cultivo de frijol soya con el fin de determinar la rentabilidad, las economías de escala y las ventajas comparativas internas y

externas del mismo.

Localización: Tres registros en el Depto. de Yoro.

Pecha de Inicio:

Número Registros

Diciembre, 1986

1 Enero, 1987

1 Enero, 1987 1 Enero, 1987

Metodología:

La selección de los tres agricultores con quienes se llevó registros económicos se realizó a fin de a encontrar productores típicos de las zonas donde se siembra frijol soya, considerando criterios de accesibilidad, alfabetismo, nivel de tecnología, y tamaño de las fincas.

Después de la etapa de selección, durante 1987 se desarrolló la labor de seguimiento, asistencia y supervisión a cada uno de los registros mediante visitas de campo realizadas por un técnico del Departamento de Economía Agrícola, quien verifica y, o, hace anotaciones en cada uno con el fin de asegurar que la información de costos sea lógica, correcta, oportuna y aceptable.

Resultados y Observaciones:

Concomitante a la continua labor de recopilación de datos económicos, en 1987 se dio inicio a la actividad de tabular y elaborar matrices resumidas con la estructura de costos de los estudios de casos, con el fin de codificar la información que será ingresada a la computadora para el análisis económico respectivo.

La información recopilada de dos ciclos es de carácter muy preliminar. Sin embargo, el resultado de las actividades desarrolladas durante este ciclo productivo permite establecer que el seguimiento, asistencia y supervisión de los registros requirió de un total de 30 visitas de campo durante 1987, las que se encuentran registradas en cinco boletas que por su calidad se precalifican de muy buena a excelente.

Conclusiones y Recomendaciones:

Con base en la experiencia de los últimos dos años se recomienda:

- Computarizar la información de costos de producción para expeditar el manejo, control y análisis económico de las boletas y como forma alterna de almacenamiento de datos.
- 2. Continuar ininterrumpidamente la labor de llevar registros económicos de costos de producción durante 1988, hasta completar una serie histórica mínima de tres años de datos a partir de la fecha de inicio del estudio de caso, lo que deberá proveer elementos de juicio suficientes como para llegar a cifras y conclusiones definitivas sobre los estudios.

Estudio: Mejoramiento genético de Maíz dulce.

Código: DI135087

Responsable: Julio Romero

Objetivos: Desarrollar un híbrido comercial de maíz

dulce como alternativa de diversifi-

cación.

Localización: Comayagua y Guarumas

Fecha de Inicio: Junio, 1987

Tratamientos: Dos poblaciones base: Maya 1 y Maya 2

Metodología:

Durante la presente fase el proyecto consistió en sembrar un lote para aumento y derivación de líneas y "top crosses" con Maya l en Comayagua y otros dos lotes con ambas variedades para desarollar cruzas S_0 x S_0 y líneas S_1 en Guarumas.

Resultados y Observaciones:

Se desarrolló 150 líneas y "top crosses" (mestizos) en Maya 1, otras 35 cruzas y sus correspondientes líneas también en Maya 1 y 16 cruzas y sus líneas en Maya 2. Adicionalmente, las poblaciones base han sido aumentadas. La evaluación de esos materiales está programada para noviembre de 1987.

TRABAJOS DE COMUNICACION

Estudio: Publicación técnica de soya.

Titulo: Soya: Ensayos Varietales y de

Herbicidas, 1986.

Objetivos:

Referir la información recabada sobre ensayos varietales y de herbicidas FHIA/RR.NN., conducidos en Guarumas, Catacamas y Choluteca durante 1986.

Audiencia:

La publicación está destinada a investigadores, extensionistas y agricultores progresistas involucrados en el cultivo de la soya.

Organización:

La publicación contiene: Introducción, procedimientos, resulta dos para variedades y herbicidas (control de malezas), recomendaciones y resumen y conclusiones.

Ejecución:

A la fecha la publicación se encuentra en manos del Departamento de Comunicaciones, ha sido corregido y está listo para ser editado.

4. Seguimiento:

La publicación será distribuida entre la audiencia para la cual está destinada.

En resumen, a pesar de que la información es preliminar, hay posiblilidades para reducir costos de producción por el uso de densidades para reducir costos de producción por el uso de densidades más bajas en la cercanías de las 328 mil semillas viables por hectárea, equivalente a depositar 25 semillas al 80% de germinación por cada metro lineal de hilera.